首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
In the methanogenic archae Methanosarcina barkeri, insertion of pyrrolysine, the 22nd amino acid, results from the decoding of an amber UAG codon in the mRNA of monomethylamine methyltransferases (MtmB). Sequence comparisons combined with structural enzymatic and chemical probing on M. barkeri MtmB1 mRNA demonstrate the presence of a hairpin motif located immediately after the redefined UAG codon. This structure of 86 nucleotides differs slightly from a proposal given in the literature and comprises four successive stems separated by three internal loops and closed by a large apical loop. Sequence alignments of MtmB mRNAs of different Methanosarcinacae reveal a conservation of the motif in both sequence and folding levels. The functional role of this motif as a signal leading to pyrrolysine insertion is discussed.  相似文献   

2.
Each of the genes encoding the methyltransferases initiating methanogenesis from trimethylamine, dimethylamine, or monomethylamine by various Methanosarcina species possesses one naturally occurring in-frame amber codon that does not appear to act as a translation stop during synthesis of the biochemically characterized methyltransferase. To investigate the means by which suppression of the amber codon within these genes occurs, MtmB, a methyltransferase initiating metabolism of monomethylamine, was examined. The C-terminal sequence of MtmB indicated that synthesis of this mtmB1 gene product did not cease at the internal amber codon, but at the following ochre codon. Antibody raised against MtmB revealed that Escherichia coli transformed with mtmB1 produced the amber termination product. The same antibody detected primarily a 50-kDa protein in Methanosarcina barkeri, which is the mass predicted for the amber readthrough product of the mtmB1 gene. Sequencing of peptide fragments from MtmB by Edman degradation and mass spectrometry revealed no change in the reading frame during mtmB1 expression. The amber codon position corresponded to a lysyl residue using either sequencing technique. The amber codon is thus read through during translation at apparently high efficiency and corresponds to lysine in tryptic fragments of MtmB even though canonical lysine codon usage is encountered in other Methanosarcina genes.  相似文献   

3.
Methanogenesis from trimethylamine, dimethylamine or monomethylamine is initiated by a series of corrinoid-dependent methyltransferases. The non-homologous genes encoding the full-length methyltransferases each possess an in-frame UAG (amber) codon that does not terminate translation. The amber codon is decoded by a dedicated tRNA, and corresponds to the novel amino acid pyrrolysine in one of the methyltransferases, indicating pyrrolysine to be the 22nd genetically encoded amino acid. Pyrrolysine has the structure of lysine with the (epsilon)N in amide linkage with a pyrroline ring. The reactivity of the electrophilic imine bond is the basis for the proposed function of pyrrolysine in activating and optimally orienting methylamine for methyl transfer to the cobalt ion of a cognate corrinoid protein. This reaction is essential for methane formation from methylamines, and may underlie the retention of pyrrolysine in the genetic code of methanogens.  相似文献   

4.
5.
6.
吡咯赖氨酸在产甲烷菌的甲胺甲基转移酶中发现,是目前已知的第 22 种参与蛋白质生物合成的氨基酸,与标准氨基酸不同的是,它由终止密码子 UAG 的有义编码形成 . 与之对应的在产甲烷菌中也含有特异的吡咯赖氨酰 -tRNA 合成酶 (PylRS) 和吡咯赖氨酸 tRNA (tRNAPyl). tRNAPyl具有不同于经典 tRNA 的特殊结构 . 产甲烷菌通过直接途径和间接途径这两种途径生成吡咯赖氨酰 -tRNAPyl(Pyl-tRNAPyl) ,它还可能通过 mRNA 上的特殊结构以及其他还未发现的机制,控制 UAG 编码成为终止密码子或者吡咯赖氨酸 . 比较了吡咯赖氨酸与另一种非标准氨基酸,第 21 种氨基酸———硒代半胱氨酸的相似点与不同点 .  相似文献   

7.
Pyrrolysine, the 22nd amino acid, is encoded by amber (TAG = UAG) codons in certain methanogenic archaea and bacteria. PylS, the pyrrolysyl-tRNA synthetase, ligates pyrrolysine to tRNAPyl for amber decoding as pyrrolysine. PylS and tRNAPyl have potential utility in making tailored recombinant proteins. Here, we probed interactions necessary for recognition of substrates by archaeal PylS via synthesis of close pyrrolysine analogs and testing their reactivity in amino acid activation assays. Replacement of the methylpyrroline ring of pyrrolysine with cyclopentane indicated that solely hydrophobic interactions with the ring-binding pocket of PylS are sufficient for substrate recognition. However, a 100-fold increase in the specificity constant of PylS was observed with an analog, 2-amino-6-((R)-tetrahydrofuran-2-carboxamido)hexanoic acid (2Thf-lys), in which tetrahydrofuran replaced the pyrrolysine methylpyrroline ring. Other analogs in which the electronegative atom was moved to different positions suggested PylS preference for a hydrogen-bond-accepting group at the imine nitrogen position in pyrrolysine. 2Thf-lys was a preferred substrate over a commonly employed pyrrolysine analog, but the specificity constant for 2Thf-lys was 10-fold lower than for pyrrolysine itself, largely due to the change in Km. The in vivo activity of the analogs in supporting UAG suppression in Escherichia coli bearing genes for PylS and tRNAPyl was similar to in vitro results, with l-pyrrolysine and 2Thf-lys supporting the highest amounts of UAG translation. Increasing concentrations of either PylS substrate resulted in a linear increase in UAG suppression, providing a facile method to assay bioactive pyrrolysine analogs. These results illustrate the relative importance of the H-bonding and hydrophobic interactions in the recognition of the methylpyrroline ring of pyrrolysine and provide a promising new series of easily synthesized pyrrolysine analogs that can serve as scaffolds for the introduction of novel functional groups into recombinant proteins.  相似文献   

8.
Ibba M  Söll D 《Current biology : CB》2002,12(13):R464-R466
Monomethylamine methyltransferase of the archaebacterium Methanosarcina barkeri contains a novel amino acid, pyrrolysine, encoded by the termination codon UAG. Initial studies suggest that pyrrolysine may be co-translationally inserted during protein synthesis, probably by a mechanism analogous to that operating during selenocysteine incorporation.  相似文献   

9.
Selenocysteine and pyrrolysine, known as the 21st and 22nd amino acids, are directly inserted into growing polypeptides during translation. Selenocysteine is synthesized via a tRNA-dependent pathway and decodes UGA (opal) codons. The incorporation of selenocysteine requires the concerted action of specific RNA and protein elements. In contrast, pyrrolysine is ligated directly to tRNAPyl and inserted into proteins in response to UAG (amber) codons without the need for complex re-coding machinery. Here we review the latest updates on the structure and mechanisms of molecules involved in Sec-tRNASec and Pyl-tRNAPyl formation as well as the distribution of the Pyl-decoding trait.  相似文献   

10.
In Methanosarcina spp., amber codons in methylamine methyltransferase genes are translated as the 22nd amino acid, pyrrolysine. The responsible pyl genes plus amber-codon containing methyltransferase genes have been identified in four archaeal and five bacterial genera, including one human pathogen. In Escherichia coli, the recombinant pylBCD gene products biosynthesize pyrrolysine from two molecules of lysine and the pylTS gene products direct pyrrolysine incorporation into protein. In the proposed biosynthetic pathway, PylB forms methylornithine from lysine, which is joined to another lysine by PylC, and oxidized to pyrrolysine by PylD. Structures of the catalytic domain of pyrrolysyl-tRNA synthetase (archaeal PylS or bacterial PylSc) revealed binding sites for tRNAPyl and pyrrolysine. PylS and tRNAPyl are now being exploited as an orthogonal pair in recombinant systems for introduction of useful modified amino acids into proteins.  相似文献   

11.
Pyrrolysine is an amino acid encoded by the amber codon in genes required for methylamine utilization by members of the Methanosarcinaceae. Pyrrolysine and selenocysteine share the distinction of being the only two non-canonical amino acids that have entered natural genetic codes. Recent experiments have shown that encoding of pyrrolysine, unlike that of selenocysteine, also shares an important trait of the original set of twenty amino acids. UAG is translated as pyrrolysine with the participation of a dedicated aminoacyl-tRNA synthetase. Expression of the genes encoding the pyrrolysyl-tRNA synthetase and its cognate tRNA is sufficient to add pyrrolysine to the genetic code of a recombinant organism. Thus, the recruitment of pyrrolysine into the genetic code involved evolution of the first non-canonical aminoacyl-tRNA synthetase and cognate tRNA to be described from nature.  相似文献   

12.
Monomethylamine methyltransferase of the archaeon Methanosarcina barkeri contains a rare amino acid, pyrrolysine, encoded by the termination codon UAG. Translation of this UAG requires the aminoacylation of the corresponding amber suppressor tRNAPyl. Previous studies reported that tRNAPyl could be aminoacylated by the synthetase-like protein PylS. We now show that tRNAPyl is efficiently aminoacylated in the presence of both the class I LysRS and class II LysRS of M. barkeri, but not by either enzyme acting alone or by PylS. In vitro studies show that both the class I and II LysRS enzymes must bind tRNAPyl in order for the aminoacylation reaction to proceed. Structural modeling and selective inhibition experiments indicate that the class I and II LysRSs form a ternary complex with tRNAPyl, with the aminoacylation activity residing in the class II enzyme.  相似文献   

13.
Methanosarcina barkeri inserts pyrrolysine (Pyl) at an in-frame UAG codon in its monomethylamine methyltransferase gene. Pyrrolysyl-tRNA synthetase acylates Pyl onto tRNAPyl, the amber suppressor pyrrolysine Pyl tRNA. Here we show that M. barkeri Fusaro tRNAPyl can be misacylated with serine by the M. barkeri bacterial-type seryl-tRNA synthetase in vitro and in vivo in Escherichia coli. Compared to the M. barkeri Fusaro tRNA, the M. barkeri MS tRNAPyl contains two base changes; a G3:U70 pair, the known identity element for E. coli alanyl-tRNA synthetase (AlaRS). While M. barkeri MS tRNAPyl cannot be alanylated by E. coli AlaRS, mutation of the MS tRNAPyl A4:U69 pair into C4:G69 allows aminoacylation by E. coli AlaRS both in vitro and in vivo.  相似文献   

14.
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies.  相似文献   

15.
We describe a detailed protocol for incorporating non-natural amino acids, 3-iodo-L-tyrosine (IY) and p-benzoyl-L-phenylalanine (pBpa), into proteins in response to the amber codon (the UAG stop codon) in mammalian cells. These amino acids, IY and pBpa, are applicable for structure determination and the analysis of a network of protein-protein interactions, respectively. This method involves (i) the mutagenesis of the gene encoding the protein of interest to create an amber codon at the desired site, (ii) the expression in mammalian cells of the bacterial pair of an amber suppressor tRNA and an aminoacyl-tRNA synthetase specific to IY or pBpa and (iii) the supplementation of the growth medium with these amino acids. The amber mutant gene, together with these bacterial tRNA and synthetase genes, is introduced into mammalian cells. Culturing these cells for 16-40 h allows the expression of the full-length product from the mutant gene, which contains the non-natural amino acid at the introduced amber position. This method is implemented using the conventional tools for molecular biology and treating cultured mammalian cells. This protocol takes 5-6 d for plasmid construction and 3-4 d for incorporating the non-natural amino acids into proteins.  相似文献   

16.
Pyrrolysine and selenocysteine use dissimilar decoding strategies   总被引:1,自引:0,他引:1  
Selenocysteine (Sec) and pyrrolysine (Pyl) are known as the 21st and 22nd amino acids in protein. Both are encoded by codons that normally function as stop signals. Sec specification by UGA codons requires the presence of a cis-acting selenocysteine insertion sequence (SECIS) element. Similarly, it is thought that Pyl is inserted by UAG codons with the help of a putative pyrrolysine insertion sequence (PYLIS) element. Herein, we analyzed the occurrence of Pyl-utilizing organisms, Pyl-associated genes, and Pyl-containing proteins. The Pyl trait is restricted to several microbes, and only one organism has both Pyl and Sec. We found that methanogenic archaea that utilize Pyl have few genes that contain in-frame UAG codons, and many of these are followed with nearby UAA or UGA codons. In addition, unambiguous UAG stop signals could not be identified. This bias was not observed in Sec-utilizing organisms and non-Pyl-utilizing archaea, as well as with other stop codons. These observations as well as analyses of the coding potential of UAG codons, overlapping genes, and release factor sequences suggest that UAG is not a typical stop signal in Pyl-utilizing archaea. On the other hand, searches for conserved Pyl-containing proteins revealed only four protein families, including methylamine methyltransferases and transposases. Only methylamine methyltransferases matched the Pyl trait and had conserved Pyl, suggesting that this amino acid is used primarily by these enzymes. These findings are best explained by a model wherein UAG codons may have ambiguous meaning and Pyl insertion can effectively compete with translation termination for UAG codons obviating the need for a specific PYLIS structure. Thus, Sec and Pyl follow dissimilar decoding and evolutionary strategies.  相似文献   

17.
A highly efficient method for the introduction of fluorophores and other markers at the N terminus of proteins produced in a cell-free extract has been developed. The method utilizes an amber (CUA) initiator suppressor tRNA chemically aminoacylated with a fluorophore-amino acid conjugate which is introduced into an Escherichia coli S30 cell-free translation system. The DNA template contains a complementary amber (UAG) codon instead of the normal initiation (AUG) codon. Using this approach, the fluorophore BODIPY-F1 (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a- diaza-s-indacene-3-propionic acid) has been incorporated at the N terminus of several model proteins. The specific labeling achieved (27-67%) using this approach is much higher than that of wild-type tRNAs. Several potential biophysical and biotechnological applications of this new technology are described.  相似文献   

18.
Summary A spontaneous mutant was isolated that harbors a weak suppressing activity towards a UAG mutation, together with an inability to grow at 43° C in rich medium. The mutation is shown to be associated with an increased misreading of UAG at certain codon contexts and UAA. UGA, missense or frameshift mutations do not appear to be misread to a similar extent. The mutation gives an increased efficiency to several amber tRNA suppressors with-out increasing their ambiguity towards UAA. The ochre suppressors SuB and Su5 are stimulated in their reading of both UAG and UAA with preference for UAG. An opal suppressor is not affected. The effect of the mutation on the efficiency of amber and ochre suppressors is dependent on the codon context of the nonsense codon.The mutated gene (uar) has been mapped and found to be recessive both with respect to suppressor-enhancing ability as well as for temperature sensitivity. The phenotype is partly suppressed by the ochre suppressor SuC. It is suggested that uar codes for a protein, which is involved in translational termination at UAG and UAA stop codons.  相似文献   

19.
The efficiency of various suppressor tRNAs in reading the UAG amber codon has been measured at 42 sites in the lacI gene. Results indicate that: (1) for all suppressors, efficiency is not an a priori value; rather, it is determined at each site by the specific reading context of the suppressed codon; (2) the degree of sensitivity to context effects differs among suppressors. Most affected is amber suppressor supE (su2), whose activity varies over a 20-fold range depending on context; (3) context effects are produced by residues present at the 3' side of the UAG codon. The most important role appears to be played by the base that is immediately adjacent to the codon. When this base is a purine, the amber codon is suppressed more efficiently than when a pyrimidine is in the same position. Superimposed on this initial pattern, the influence of bases further downstream to the UAG triplet can be detected also. The possibility is discussed that context effects are produced by the whole codon following UAG in the message.  相似文献   

20.
Using synthetic oligonucleotides, we have constructed a collection of Escherichia coli amber suppressor tRNA genes. In order to determine their specificities, these tRNAs were each used to suppress an amber (UAG) nonsense mutation in the E. coli dihydrofolate reductase gene fol. The mutant proteins were purified and subjected to N-terminal sequence analysis to determine which amino acid had been inserted by the suppressor tRNAs at the position of the amber codon. The suppressors can be classified into three groups on the basis of the protein sequence information. Class I suppressors, tRNA(CUAAla2), tRNA(CUAGly1), tRNA(CUAHisA), tRNA(CUALys) and tRNA(CUAProH), inserted the predicted amino acid. The class II suppressors, tRNA(CUAGluA), tRNA(CUAGly2) and tRNA(CUAIle1) were either partially or predominantly mischarged by the glutamine aminoacyl tRNA synthetase. The class III suppressors, tRNA(CUAArg), tRNA(CUAAspM), tRNA(CUAIle2), tRNA(CUAThr2), tRNA(CUAMet(m)) and tRNA(CUAVal) inserted predominantly lysine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号