首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
Stacey MG  Koh S  Becker J  Stacey G 《The Plant cell》2002,14(11):2799-2811
A T-DNA-tagged population of Arabidopsis was screened for mutations in AtOPT3, which encodes a member of the oligopeptide (OPT) family of peptide transporters, and a recessive mutant allele, opt3, was identified. Phenotypic analysis of opt3 showed that most homozygous embryos were arrested at or before the octant stage of embryo development and that none showed the usual periclinal division leading to the formation of the protoderm. This defective phenotype could be reversed by complementation with the full-length, wild-type AtOPT3 gene. A beta-glucuronidase (GUS) fusion to DNA sequences upstream of the putative AtOPT3 ATG start codon was constructed, and the expression pattern was assayed in transgenic plants. AtOPT3 was expressed in the vascular tissues of seedlings and mature plants as well as in pollen. Consistent with the function of AtOPT3 in embryogenesis, AtOPT3::GUS expression also was detected in developing embryos and in the maternal tissues of seeds. These data suggest a critical role for peptide transport in early embryo development.  相似文献   

2.
3.
4.
Stacey MG  Osawa H  Patel A  Gassmann W  Stacey G 《Planta》2006,223(2):291-305
AtOPT promoter-GUS fusions were constructed for six of the nine known, putative oligopeptide transporters (OPTs) in Arabidopsis thaliana and used to examine AtOPT expression at various stages of plant development. AtOPT1, AtOPT3, AtOPT4, AtOPT6 and AtOPT7 were expressed in the embryonic cotyledons prior to root radicle emergence. Except for AtOPT8, which gave weak expression, all AtOPTs were strongly expressed in post-germinative seedlings with strongest expression in vascular tissues of cotyledons and hypocotyls. Preferential expression of AtOPTs in vascular tissues was also observed in cotyledons, leaves, hypocotyls, roots, flowers, siliques, and seed funiculi of seedlings and adult plants. Differential tissue-specific expression was observed for specific AtOPTs. For example, AtOPT1, AtOPT3 and AtOPT8 were uniquely expressed in pollen. Only AtOPT1 was expressed in growing pollen tubes, while only AtOPT6 was observed in ovules. AtOPT8 was transiently expressed in seeds during early stages of embryogenesis. Iron limitation was found to enhance expression of AtOPT3. These data suggest distinct cellular roles for specific AtOPTs including nitrogen mobilization during germination and senescence, pollen tube growth, pollen and ovule development, seed formation and metal transport.  相似文献   

5.
6.
Cloning of higher plant omega-3 fatty acid desaturases.   总被引:21,自引:12,他引:9       下载免费PDF全文
Arabidopsis thaliana T-DNA transformants were screened for mutations affecting seed fatty acid composition. A mutant line was found with reduced levels of linolenic acid (18:3) due to a T-DNA insertion. Genomic DNA flanking the T-DNA insertion was used to obtain an Arabidopsis cDNA that encodes a polypeptide identified as a microsomal omega-3 fatty acid desaturase by its complementation of the mutation. Analysis of lipid content in transgenic tissues demonstrated that this enzyme is limiting for 18:3 production in Arabidopsis seeds and carrot hairy roots. This cDNA was used to isolate a related Arabidopsis cDNA, whose mRNA is accumulated to a much higher level in leaf tissue relative to root tissue. This related cDNA encodes a protein that is a homolog of the microsomal desaturase but has an N-terminal extension deduced to be a transit peptide, and its gene maps to a position consistent with that of the Arabidopsis fad D locus, which controls plastid omega-3 desaturation. These Arabidopsis cDNAs were used as hybridization probes to isolate cDNAs encoding homologous proteins from developing seeds of soybean and rapeseed. The high degree of sequence similarity between these sequences suggests that the omega-3 desaturases use a common enzyme mechanism.  相似文献   

7.
8.
Pollen tubes must navigate through different female tissues to deliver sperm to the embryo sac for fertilization. Protein disulfide isomerases play important roles in the maturation of secreted or plasma membrane proteins. Here, we show that certain T-DNA insertions in Arabidopsis thaliana PDIL2-1, a protein disulfide isomerase (PDI), have reduced seed set, due to delays in embryo sac maturation. Reciprocal crosses indicate that these mutations acted sporophytically, and aniline blue staining and scanning electron microscopy showed that funicular and micropylar pollen tube guidance were disrupted. A PDIL2-1-yellow fluorescent protein fusion was mainly localized in the endoplasmic reticulum and was expressed in all tissues examined. In ovules, expression in integument tissues was much higher in the micropylar region in later developmental stages, but there was no expression in embryo sacs. We show that reduced seed set occurred when another copy of full-length PDIL2-1 or when enzymatically active truncated versions were expressed, but not when an enzymatically inactive version was expressed, indicating that these T-DNA insertion lines are gain-of-function mutants. Our results suggest that these truncated versions of PDIL2-1 function in sporophytic tissues to affect ovule structure and impede embryo sac development, thereby disrupting pollen tube guidance.  相似文献   

9.
10.
RING zinc-finger proteins play important roles in the regulation of development in a variety of organisms. In the plant kingdom, few genes encoding RING zinc-finger proteins have been documented with visible effects on plant growth and development. A novel gene, RIE1, encoding a RING-H2 zinc-finger protein was identified in Arabidopsis thaliana and is characterized in this paper. RIE1 encodes a predicted protein product of 359 amino acids residues with a molecular mass of 40 kDa, with a RING-H2 zinc-finger motif located at the extreme end of the C-terminus. Characterization of a Dissociation (Ds) insertion line (SGT4559) and a T-DNA insertion line (SRIE1) demonstrated that disruption of RIE1 is embryo-lethal. SGT4559 heterozygous plants produced seeds with embryo development arrested from globular to torpedo stages. Some mutant seeds were rescued by embryo culture, and the mutant (rie1) plants seemed to grow normally compared to wild-type plants, except that the mutants produced only abnormal seeds. However, RIE1 was expressed in different tissues throughout the whole plant as revealed by northern blot analysis and gene fusion assay of RIE1 promoter with the beta-glucuronidase (GUS) gene. Our results indicated that RIE1 plays an essential role in seed development.  相似文献   

11.
12.
13.
14.
The pbs3-1 mutant, identified in a screen for Arabidopsis (Arabidopsis thaliana) mutants exhibiting enhanced susceptibility to the avirulent Pseudomonas syringae pathogen DC3000 (avrPphB), also exhibits enhanced susceptibility to virulent P. syringae strains, suggesting it may impact basal disease resistance. Because induced salicylic acid (SA) is a critical mediator of basal resistance responses, free and glucose-conjugated SA levels were measured and expression of the SA-dependent pathogenesis-related (PR) marker, PR1, was assessed. Surprisingly, whereas accumulation of the SA glucoside and expression of PR1 were dramatically reduced in the pbs3-1 mutant in response to P. syringae (avrRpt2) infection, free SA was elevated. However, in response to exogenous SA, the conversion of free SA to SA glucoside and the induced expression of PR1 were similar in pbs3-1 and wild-type plants. Through positional cloning, complementation, and sequencing, we determined that the pbs3-1 mutant contains two point mutations in the C-terminal region of the protein encoded by At5g13320, resulting in nonconserved amino acid changes in highly conserved residues. Additional analyses with Arabidopsis containing T-DNA insertion (pbs3-2) and transposon insertion (pbs3-3) mutations in At5g13320 confirmed our findings with pbs3-1. PBS3 (also referred to as GH3.12) is a member of the GH3 family of acyl-adenylate/thioester-forming enzymes. Characterized GH3 family members, such as JAR1, act as phytohormone-amino acid synthetases. Thus, our results suggest that amino acid conjugation plays a critical role in SA metabolism and induced defense responses, with PBS3 acting upstream of SA, directly on SA, or on a competitive inhibitor of SA.  相似文献   

15.

Main conclusion

PDX1.2 is expressed in the basal part of the globular-stage embryo, and plays critical roles in development, hypocotyl elongation, and stress response.

Abstract

The Arabidopsis thaliana PDX1.2 protein belongs to a small family of three members. While PDX1.1 and PDX1.3 have been extensively described and are well established to function in vitamin B6 biosynthesis, the biological role of PDX1.2 still remains elusive. Here, we show that PDX1.2 is expressed early in embryo development, and that heat shock treatment causes a strong up-regulation of the gene. Using a combined genetic approach of T-DNA insertion lines and expression of artificial micro RNAs, we can show that PDX1.2 is critically required for embryo development, and for normal hypocotyl elongation. Plants with reduced PDX1.2 expression also display reduced primary root growth after heat shock treatments. The work overall provides a set of important new findings that give greater insights into the developmental role of PDX1.2 in plants.  相似文献   

16.
To discover genes involved in nitric oxide (NO) metabolism, a genetic screen was employed to identify mutants defective in NO accumulation after treatment with the physiological inducer hydrogen peroxide. In wild-type Arabidopsis thaliana plants, NO levels increase eightfold in roots after H2O2 treatment for 30 min. A mutant defective in H2O2-induced NO accumulation was identified, and the corresponding mutation was mapped to the prohibitin gene PHB3, converting the highly conserved Gly-37 to an Asp in the protein''s SPFH domain. This point mutant and a T-DNA insertion mutant were examined for other NO-related phenotypes. Both mutants were defective in abscisic acid–induced NO accumulation and stomatal closure and in auxin-induced lateral root formation. Both mutants were less sensitive to salt stress, showing no increase in NO accumulation and less inhibition of primary root growth in response to NaCl treatment. In addition, light-induced NO accumulation was dramatically reduced in cotyledons. We found no evidence for impaired H2O2 metabolism or signaling in the mutants as H2O2 levels and H2O2-induced gene expression were unaffected by the mutations. These findings identify a component of the NO homeostasis system in plants and expand the function of prohibitin genes to include regulation of NO accumulation and NO-mediated responses.  相似文献   

17.
18.
Schmidt R  Stransky H  Koch W 《Planta》2007,226(4):805-813
The development of seeds depends on the import of carbohydrates and amino acids supplied by the maternal tissue via the phloem. Several amino acid transporters have been reported to be expressed during seed and silique development in Arabidopsis thaliana (L.) Heynh. Here we show that mutants lacking the high affinity amino acid permease 8 (At1g10010) display a severe seed phenotype. The overall number of seeds and the number of normally developed seed is reduced by ∼50% in siliques of the Ataap8 T-DNA insertion mutant. This result could be reproduced in plants where expression of AtAAP8 is targeted with an RNAi approach. The seed phenotype is correlated with a specifically altered amino acid composition of young siliques. Aspartic acid and glutamic acid are significantly reduced in young siliques of the mutants. In correlation with the fact that AAP8 is a high affinity transporter for acidic amino acids, translocation of 14C-labelled aspartate fed via the root system to seeds of the mutants is reduced. AAP8 plays a crucial role for the uptake of amino acids into the endosperm and supplying the developing embryo with amino acids during early embryogenesis.  相似文献   

19.
The P4 ATPase family in Arabidopsis consists of 12 members that encode putative aminophospholipid translocases (ALA1–12). Until recently, no mutations in these genes have been shown to cause a visible phenotype, although reduced expression of ALA1 in transgenic plants expressing an antisense construct has been shown to result in reduced plant size when plants were grown under cold conditions. During a genetic screen for mutations that affect trichome shape, we isolated several alleles of the irregular trichome branch 2 ( itb2 ) mutation. Subsequent positional cloning of this locus showed that ITB2 encoded ALA3 . Phenotypic and genetic analyses of multiple itb2 alleles, including the T-DNA insertion alleles, showed that the loss of ITB2 / ALA3 function leads to aberrant trichome expansion, reduced primary root growth and longer root hairs. We also found that itb2 / ala3 mutant pollen does not grow as well as wild-type pollen, leading to severe segregation distortion. Our results suggest that aminophospholipid translocases play an important role in the polar growth of plant cells, which is consistent with the proposed role of ALA3 in membrane trafficking. Furthermore, itb2 / ala3 mutants provide a convenient visible phenotype for further genetic analysis of the ALA family in Arabidopsis.  相似文献   

20.
Aminoacyl-tRNA synthetases (AARSs) involve the process of catalyzing the ligation of specific amino acids to their cognate tRNAs. Here we identified an Arabidopsis mutant embryonic factor 31 (fac31), its embryos arrested at development from one cell to globular stage. The FAC31 gene was identified by positional cloning and confirmed by a genetic complementation test with two independent T-DNA insertion lines and transgenic rescue with full-length genomic DNA. FAC31 encodes a Tyrosyl-tRNA synthetase and localize to mitochondria and cytoplasm. Fac31 mutants contain a point mutation from CAA to a stop codon TAA which may lead to a truncated protein. The phenotype of fac31 mutants are very similar to the T-DNA insertion lines Salk_016722 and Salk_045570 displayed smaller embryo sac contains only less number of endosperm nucleolus. Genetic analysis showed that the FAC31 gene had no parental effects through the transmission of mutated FAC31 gene by gametes. FAC31 is a high-conserved protein among animals and plants. RT-PCR analysis and promoter-GUS expression showed that it is expressed in nearly all tissues tested, strongly expressed in meristem of seedlings, the primordium of lateral root, young inflorescences, mature pollen, germinated pollen tubes and embryo sacs before heart stage. Our findings suggest that FAC31 is essential for the seed development through regulation the expanding of embryo sac and proliferation of endosperm nucleolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号