首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vole and Fuller strains of Rochalimaea quintana were grown on monolayers of mouse L cells irradiated 7 days previously and examined by light microscopy and scanning and transmission electron microscopy. Most of the bacteria of both strains were shown to adhere to the L cells but remained in an extracellular location. Cell division was frequently seen among the extracellular bacteria. The few intracellular bacteria seemed to be within vacuoles and did not multiply. Attachment to the eucaryotic cell did not seem to involve pili or other bacterial surface structures. The dimensions of the bacteria were approximately 0.45 micron in width by 1.0 to 1.7 micron in length. The cell envelope consisted of the usual trilaminar cell wall and plasma membranes separated by a layer of low electron density, as found in other gram-negative bacteria. No significant differences between the vole and Fuller strains either in morphology or relationship to eucaryotic cells were encountered.  相似文献   

2.
The growth cycle of Rickettsia quintana was studied for the first time in liquid culture. Growth of the microorganism in a transparent broth medium was made possible by the finding that fetal calf serum (FCS), but not calf serum (CS), satisfied the requirement of R. quintana (Fuller strain) for red blood cell lysate. The three constituents of the medium, other than FCS, were autoclavable. The growth cycle was characterized by a lag phase of approximately 24 hr, an exponential growth phase of 72 hr, and a doubling time of approximately 4.5 hr. In FCS medium, titers increased 10(5)-fold over starting titers and reached a peak after 5 days of greater than 10(8) colony-forming-units (CFU)/ml. Optical density readings at 520 nm (OD(520)) served as useful estimates of the titers only during the last 30 hr of exponential growth. Before this time, titers were below 3 x 10(7) CFU/ml and could not be detected at OD(520). The growth-promoting activity of FCS appeared to be a normal serum component widely distributed among fetal calves. FCS from five commercial suppliers supported growth of R. quintana. The active factor(s) was: (i) non-dialyzable, (ii) resistant to heating at 56 C for 30 min, and (iii) partially inactivated at 100 C in 2 min and completely lost at 100 C in 10 min. The results emphasize the presence of erythrocyte and serum factors other than hemoglobin which stimulate the growth of R. quintana.  相似文献   

3.
4.
The activities of five hydrolytic enzymes in the culture filtrate and in cell-free extracts from strains of Streptomyces griseus, differing in macrotetrolide production, have been determined over a fermentation period of 200 h. The specific activities of phosphatase, phosphodiesterase, and adenosine triphosphatase in the medium, and phosphatase and phosphodiesterase in the cell-free extract were lower in the low than in the high producing strain. No significant difference was found between the strains, for adenosine triphosphatase and protease activity in the cell-free extract or protease activity in the medium. The specific activity of esterase was higher in the low than in the high producing strain.  相似文献   

5.
Rochalimaea quintana is the only member of the family Rickettsiaceae that can be grown in vitro. Because of its relationship to the other members of this family, techniques developed to transform R. quintana might be applicable to the obligate intracellular bacteria of the Rickettsiaceae. These procedures are critical to understanding mechanisms of pathogenesis and the nature of obligate intracellular growth. A transformation procedure for R. quintana has been established by using electroporation techniques. Several cosmids or plasmids with replicons RK2 and RSF1010 have been successfully used to transform this organism. Transformants were obtained by selection for antibiotic resistance to chloramphenicol or kanamycin. Plasmid retention and replication has been verified by Southern blot analysis and chloramphenicol acetyltransferase assay. Experimentation with different voltage field strengths and pulse times indicate that 12.5 kV/cm at 10 ms (25 microF and 400 omega) was optimal, giving a transformation frequency of approximately 0.3% and 3 x 10(5) transformants per microgram of DNA.  相似文献   

6.
Rickettsia quintana grew in a liquid medium consisting of a brain-heart infusion base supplemented with starch and hematin. The growth requirement for hematin could not be substituted by compounds of known catalytic activity for H(2)O(2), viz., catalase, potassium pyruvate, or charcoal, or by the reducing compounds sodium sulfite and sodium thioglycollate. R. quintana was catalase-negative, but no H(2)O(2) production could be demonstrated by the catalase-aminotriazole technique. A minimum inoculum giving 10(5) cells/ml was required to initiate growth. The generation time at 33 C was 10 hr. The temperature range for growth was 28 to 37 C. Growth was enhanced when succinate or glutamate was added as energy source.  相似文献   

7.
The activity of ornithine decarboxylase (ornithine carboxylyase E.C. 4.1.1.17) was studied during meiotic maturation induced in vitro by progesterone in follicle cell-free oocytes. Enzyme activity increased 4–6 fold during maturation, preceding germinal vesicle breakdown. The increase in ornithine decarboxylase activity was inhibited by cholera toxin, an agent that blocks meiotic maturation and increases cAMP levels within the cell. It was also prevented by cycloheximide but not by actinomycin D. Treatment of oocytes with D,L-α-difluoromethyl-ornithine, an irreversible inhibitor of ornithine decarboxylase and of putrescine synthesis, effectively abolished enzyme activity without preventing germinal vesicle breakdown. These observations show that the progesterone-induced increase in ornithine decarboxylase activity is not required for completion of meiotic division of the oocyte.  相似文献   

8.
Effect of the M (modifier) gene of Escherichia coli W on the expression of wild-type structural genes of four arginine biosynthetic enzymes was studied by examining enzyme activity in cell-free extracts of cultures grown in minimal medium and medium containing arginine. The mutant M gene was originally identified as causing arginine-induced synthesis of acetylornithine delta-transaminase in a strain deficient for the enzyme. The strains used in this study received the mutant M gene by recombination. Noncoordinate repression has been demonstrated for two more enzymes of the arginine regulon of E. coli W and the M(-) gene increases the degree of noncoordinate repression for the regulon. Mutation of the M gene results in altered regulation of acetylornithine delta-transaminase, ornithine transcarbamylase, and acetylornithinase. In addition, a decreased growth rate is observed. It is proposed that the M gene is a regulatory gene. A model is presented to explain the data which involves changes in operator-repressor affinity for the structural genes and possibly for the gene controlling arginyl transfer ribonucleic acid synthetase.  相似文献   

9.
Cell-free extracts from phaseolotoxin-producing strains of Pseudomonas syringae pv. phaseolicola grown at 18 degrees C, the optimum temperature for phaseolotoxin production, contain an ornithine carbamoyltransferase activity that is insensitive to phaseolotoxin. Extracts from the same strains grown at 30 degrees C, a temperature at which little or no detectable phaseolotoxin is produced, and from phaseolotoxin-nonproducing strains contain a phaseolotoxin-sensitive ornithine carbamoyltransferase activity. The phaseolotoxin-insensitive ornithine carbamoyltransferase activity is also less senstive to N delta-(phosphonacetyl)-L-ornithine than the phaseolotoxin-sensitive ornithine carbamoyltransferase activity of the corresponding strain.  相似文献   

10.
Galactosidase activity of lactose-positive Neisseria   总被引:2,自引:0,他引:2       下载免费PDF全文
The chromogenic substrate o-nitrophenyl-beta-d-galactopyranoside (ONPG) was hydrolyzed by lactose-positive Neisseria. Eight strains of pharyngeal origin were examined. In culture reactions, seven strains resembled Neisseria meningitidis with the exception that they produced acid from 1% (w/v) lactose. An eighth strain (V8) differed in that it did not form acid from maltose or from 1% lactose. However, acid formation was observed in 10% lactose cultures of strain V8, suggesting that entry of lactose occurred by passive diffusion, rather than as a result of permease activity. The enzymes which hydrolyzed ONPG were produced constitutively by the cells of all eight strains. Thus, specific activity in these strains was not increased by prior exposure to lactose, or to two other possible inducers, isopropyl-beta-d-thiogalactoside or methyl-beta-d-thiogalactoside. Study of cell-free extracts of one strain showed that the enzyme was heat-labile, having a half-life of 10 min at 45 C. The enzyme was unstable at low protein concentrations, but it was protected completely or partially when albumin or manganous ions were added. The enzyme appeared to be a typical beta-galactosidase: alpha-galactosides (melibiose and p-nitrophenyl-alpha-d-galactopyranoside) were not hydrolyzed, activity against ONPG was not dependent upon inorganic phosphate, and galactose was released by cleavage of ONPG. ONPG hydrolysis provided a simple and rapid method for detecting lactose-positive Neisseria.  相似文献   

11.
Effects of Pesticides on Nitrite Oxidation by Nitrobacter agilis   总被引:2,自引:2,他引:0       下载免费PDF全文
The influence of pesticides on the growth of Nitrobacter agilis in aerated cultures and on the respiration of N. agilis cell suspensions and cell-free extracts was studied. Two pesticides, aldrin and simazine, were not inhibitory to growth of Nitrobacter, but five compounds [isopropyl N-(3-chlorophenyl) carbamate (CIPC), chlordane, 1,1-dichloro-2,2-bis (p-chlorophenyl) ethane (DDD), heptachlor, and lindane] prevented growth when added to the medium at a concentration of 10 mug/ml. Whereas CIPC and eptam prevented nitrite oxidation by cell suspensions, the addition of DDD and lindane resulted in only partial inhibition of the oxidation. Heptachlor and chlordane also caused only partial inhibition of oxidation, but were more toxic with cell-free extract nitrite oxidase. None of the pesticides inhibited the nitrate reductase activity of cell-free extracts, but most caused some repression of cytochrome c oxidase activity. Heptachlor was the most deleterious compound.  相似文献   

12.
Activation of Inactive Nitrogenase by Acid-Treated Component I   总被引:19,自引:11,他引:8       下载免费PDF全文
When Azotobacter vinelandii was derepressed for nitrogenase synthesis in a N-free medium containing tungstate instead of molybdate, an inactive component I was synthesized. Although this inactive component I could be activated in vivo upon addition of molybdate to the medium, it could not be activated in vitro when molybdate was added to the extracts. Activation occurred, however, when an acid-treated component I was added to extracts of cells derepressed in medium containing tungstate. Acid treatment completely abolished component I activity. Mutant strains UW45 and UW10 were unable to fix N(2). Both strains synthesized normal levels of component II but produced inactive component I. Acid-treated component I activated inactive component I in extracts of mutant strain UW45 but not mutant strain UW10. This activating factor could be obtained from N(2)-fixing Klebsiella pneumoniae, Clostridium pasteurianum, and Rhodospirillum rubrum.  相似文献   

13.
Dundas, Ian E. D. (University of Illinois, Urbana), and H. Orin Halvorson. Arginine metabolism in Halobacterium salinarium, an obligately halophilic bacterium. J. Bacteriol. 91:113-119. 1966.-Arginine was shown to be essential for growth of Halobacterium salinarium strain 1 in a chemically defined medium. Citrulline was the only compound which could substitute for arginine without affecting growth. Resting cells of H. salinarium converted arginine to citrulline and citrulline to ornithine. Cells grown in an arginine-free medium with C(14)-ureido-labeled citrulline incorporated the isotope mainly into the arginine of their proteins. The enzymes arginine desimidase and ornithine transcarbamylase were found and studied in cell-free extracts of H. salinarium. Experiments indicated that arginine was degraded in H. salinarium by arginine desimidase to citrulline, and that citrulline was further degraded by ornithine transcarbamylase to carbamyl phosphate and ornithine. Synthesis of arginine from citrulline seems to occur via the formation of argininosuccinic acid.  相似文献   

14.
By complementing cell-free extracts of Pseudomonas putida F1/pSMMO20 with purified soluble methane monooxygenase (sMMO) components of Methylosinus trichosporium OB3b, the low cloned-gene sMMO activity in the recombinant strain was found to be due to incomplete activity of the hydroxylase component. To address this incomplete activity, additional sMMO-expressing strains were formed by transferring mmo-containing pSMMO20 and pSMMO50 into various bacterial species including pseudomonads and alpha-2 subdivision strains such as methanotrophs, methylotrophs, Agrobacterium tumefaciens A114, and Rhizobium meliloti 102F34 (11 new strains screened); sMMO activity was detected in the last two strains. To increase plasmid segregational stability, the hok/sok locus originally from Escherichia coli plasmid R1 was inserted downstream of the mmo locus of pSMMO20 (resulting in pSMMO40) and found to enhance plasmid stability in P. putida F1 and R. meliloti 102F34 (first report of hok/sok in Rhizobium). To further increase sMMO activity, a modified Whittenbury minimal medium was selected from various minimal and complex media based on trichloroethylene (TCE) degradation and growth rates and was improved by removing the sMMO-inhibiting metal ions [Cu(II), Ni(II), and Zn(II)] and chloramphenicol from the medium and by supplementing with an iron source (3.6 muM of ferrous ammonium sulfate). Using chemostat-grown P. putida F1/pSMMO40, it was found that sMMO activity was higher for cells grown at higher dilution rates. These optimization efforts resulted in a twofold increase in the extent of TCE degradation and more consistent sMMO activity. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
The relationship between the rates of methane and ethane oxidation by washed suspensions of methane-oxidizing bacteria has been investigated. Considerable differences between bacterial strains were observed. Two closely related Methylomonas strains which differed in their oxidizing capacity were further investigated. The low ethane oxidation rate of one strain could be strongly stimulated by the addition of oxidizable co-substrates, and the presence of ethane stimulated formate oxidation. The other strain had a much higher ethane oxidation rate and stimulation by co-substrates was negligible.Differences between the levels of dissimilative enzymes in cell-free extracts could not be detected. Attempts to produce extracts with methane mono-oxygenase activity failed. When cells were made permeable with chitosan the results suggested that strains with a low ethane oxidizing capacity obtain the required reductant for the mono-oxygenase from endogenous respiration. In strains with a high ethane oxidation rate, the reductant appears to be derived from oxidation of ethanol or acetaldehyde.  相似文献   

16.
A previous study has shown that the activity of ornithine decarboxylase in cultured Nb2 node rat lymphoma cells falls to undetectable levels when cells become quiescent following incubation in lactogen (prolactin)-deficient medium. In the present study, it was found that addition of extracts of the lactogen-deprived, quiescent cells to extracts of log-phase cells markedly reduced the ornithine decarboxylase activity of the latter, the inhibitory activity being proportional to the amount of quiescent cell extract added. Evidence is presented that the ornithine decarboxylase-inhibitory activity in the quiescent cell extracts is due to an antizyme-like, polypeptide factor with an Mr of approx. 28,000. The activity of the inhibitor appears to be directed rather specifically against ornithine decarboxylase, since the activities of S-adenosylmethionine decarboxylase, thymidine kinase and uridine kinase were not affected. The Nb2 cell ornithine decarboxylase inhibitor may have an important role in modulating the cellular levels of ornithine decarboxylase as they change in response to the withdrawal and restoration of extracellular mitogenic lactogens.  相似文献   

17.
Biosynthesis of Diacetyl in Bacteria and Yeast   总被引:8,自引:2,他引:6  
Both diacetyl and acetoin were produced by cell-free extracts and cultures of Pseudomonas fluorescens, Aerobacter aerogenes, Lactobacillus brevis, and Saccharomyces cerevisiae 299, whereas only acetoin was produced by cell-free extracts and cultures of Streptococcus lactis, Serratia marcescens, Escherichia coli, and S. cerevisiae strains 513 and 522. Cell-free extracts that produced diacetyl did not produce it from acetoin; they produced it from pyruvate, but only if acetyl-coenzyme A was was added to the reaction mixtures. Production of diacetyl by S. cerevisiae 299 was prevented by valine, inhibited by sodium arsenite, and stimulated by pantothenic acid. Valine did not prevent the production of acetoin. E. coli and the three strains of S. cerevisiae did not decarboxylate alpha-acetolactate but did use acetaldehyde in the production of acetoin from pyruvate. The other organisms produced acetoin from pyruvate via alpha-acetolactate.  相似文献   

18.
The metabolism of acetone by the aerobic bacterium Xanthobacter strain Py2 was investigated. Cell suspensions of Xanthobacter strain Py2 grown with propylene or glucose as carbon sources were unable to metabolize acetone. The addition of acetone to cultures grown with propylene or glucose resulted in a time-dependent increase in acetone-degrading activity. The degradation of acetone by these cultures was prevented by the addition of rifampin and chloramphenicol, demonstrating that new protein synthesis was required for the induction of acetone-degrading activity. In vivo and in vitro studies of acetone-grown Xanthobacter strain Py2 revealed a CO2-dependent pathway of acetone metabolism for this bacterium. The depletion of CO2 from cultures grown with acetone, but not glucose or n-propanol, prevented bacterial growth. The degradation of acetone by whole-cell suspensions of acetone-grown cells was stimulated by the addition of CO2 and was prevented by the depletion of CO2. The degradation of acetone by acetone-grown cell suspensions supported the fixation of 14CO2 into acid-stable products, while the degradation of glucose or beta-hydroxybutyrate did not. Cultures grown with acetone in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C-label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. Cell extracts prepared from acetone-grown cells catalyzed the CO2- and ATP-dependent carboxylation of acetone to form acetoacetate as a stoichiometric product. ADP or AMP were incapable of supporting acetone carboxylation in cell extracts. The sustained carboxylation of acetone in cell extracts required the addition of an ATP-regenerating system consisting of phosphocreatine and creatine kinase, suggesting that the carboxylation of acetone is coupled to ATP hydrolysis. Together, these studies provide the first demonstration of a CO2-dependent pathway of acetone metabolism for a strictly aerobic bacterium and provide direct evidence for the involvement of an ATP-dependent carboxylase in bacterial acetone metabolism.  相似文献   

19.
The in vitro activities of 16 antimicrobial agents against Rickettsia prowazekii (Breinl strain), R. rickettsii (Bitterroot strain), R. sibirica (ATCC No. VR151) and R. tsutsugamushi (Gilliam, Karp, Kato, Shimokoshi, Kawasaki and Kuroki strains) were determined by the cell culture method. Tetracycline, demethylchlortetracycline, doxycycline, minocycline, chloramphenicol, kitasamycin and rifampicin were generally effective (MIC, 0.005-0.78 micrograms/ml) to all strains tested. Quinolones such as norfloxacin, ciprofloxacin and ofloxacin were moderately active, but they were less active against R. tsutsugamushi than other rickettsial species. Penicillins and cephems showed low activity against most of the strains tested, but high concentrations of benzylpenicillin (MIC, 25-50 micrograms/ml) inhibited R. prowazekii, R. rickettsii and R. sibirica. These findings may be applicable for differentiation of species of genus Rickettsia.  相似文献   

20.
Cells of Staphylococcus aureus MF-31 which have been heat-injured at 52 C have an altered metabolic activity. Analyses of whole-cell preparations by means of the Thunberg technique and Warburg manometry showed decreased dehydrogenase activity and oxygen uptake on a variety of substrates. In cell-free extracts prepared from injured cells, it was demonstrated that the specific activity of fructose diphosphate aldolase, lactate dehydrogenase, and butanediol dehydrogenase was less than that of extracts prepared from normal unheated cells. Recovery of the heat-injured cells in a suitable medium supported a return of the dehydrogenase activity and oxygen uptake, but the activity of the enzymes in cell-free extracts prepared from such partially recovered cells did not fully return to the level of normal (unheated) preparations. Addition of chloramphenicol or actinomycin D to the recovery medium, singly or in combination, retarded the return of the normal metabolic activity. Radiorespirometric experiments indicated that the percentage participation of the Embden-Meyerhoff Parnas and hexose monophosphate pathways remained the same for normal and heat-injured cells. The sublethal heat treatment decreased the catabolic capabilities of S. aureus and the production of selected end products associated with the metabolism of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号