首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The incubation of human peripheral blood monocytes with endotoxins activates the cells to lyse tumorigenic targets directly and also induces the production and release into the culture medium of factors that produce lysis of mouse-transformed fibroblasts L-929 (tumor necrosis factor (TNF)-sensitive) and human A-375 melanoma cells (interleukin-1 (IL-1)- and TNF-sensitive). Immunoblotting analysis revealed that the culture medium of endotoxin-activated but not of control monocytes contained both IL-1 and TNF with a molecular weight of 17,000 daltons each. TNF activity was determined by lysis of L-929 cells, and IL-1 activity was measured by the proliferation of D-10 cells. The production of IL-1 and TNF was concentration-dependent, and the amounts of these monokines were paralleled. The antitumor activity of the culture supernates from endotoxin-treated monocytes was significantly decreased by incubation with heterologous antisera to IL-1, TNF, or both. Recombinant human IL-1 and TNF were used in parallel experiments and as positive controls. Each monokine used produced cytotoxic effects in susceptible targets. The combination of IL-1 and TNF, which more likely resembles culture supernates of activated macrophages, produced an additive antitumor cytotoxicity effect.  相似文献   

2.
The ability of Shigella dysenteriae type 1 porin to induce the release of nitric oxide (NO) and interleukin-1 (IL-1) from peritoneal macrophages of mouse and to regulate lipopolysaccharide (LPS) and gamma interferon (IFN-gamma) mediated release of the two proinflammatory mediators was investigated. Porin released nitrite when added to macrophage cultures. A maximum of 3.2-fold nitrite release by macrophages was observed with 100 ng ml(-1) of porin. The nitrite release of LPS was enhanced significantly by lower concentrations of porin, whereas the effect of IFN-gamma was enhanced by porin at higher concentrations. Polysaccharide (PS) moiety of LPS stimulated the nitrite release of elicited macrophages by 1.6-fold compared to untreated control. It also enhanced the stimulatory effect of 1 and 10 ng ml(-1) of porin by 1.3-fold. Lipid A (LPA) moiety of LPS did not release nitrite, nor did it increase the porin mediated nitrite production. Porin treated 24 h old macrophage culture supernatants were applied for ConA activated thymocyte proliferation as a measure for determination of IL-1 release. Sixty percent depletion of thymocyte proliferation was observed when the porin treated macrophage supernatants were absorbed with anti-IL-1 antibody. A maximum of 5.5-fold increase of thymocyte proliferation over control was found with 1 and 10 ng ml(-1) of porin. One or 10 ng ml(-1) of porin and LPS augmented the thymocyte growth, 1.5-fold beyond that obtained by porin and 1.8-/1. 7-fold more than that obtained by LPS, alone. Similarly, porin and IFN-gamma co-stimulated the cell growth also. PS enhanced the thymocyte proliferation by 5-fold. It also enhanced the thymocyte growth by co-stimulating 1.4-fold the effect observed by 1 or 10 ng ml(-1) of porin alone. LPA could not participate in the cell proliferating activity nor did it enhance the stimulatory effect of porin. Therefore, both nitrite release and thymocyte proliferation by LPS could be substituted by PS only. The tight association of the two bacterial outer membrane components, porin and LPS, could be a necessary co-signal for boosting the release of the two proinflammatory mediators, namely NO and IL-1, which may be associated with the inflammatory response of the colon during Shigella invasion.  相似文献   

3.
The aim of this study was to determine phenotypic differences when BCG invades macrophages. Bacilli prepared from the same BCG primary seed, but produced in different culture media, were analysed with respect to the ability to stimulate macrophages and the susceptibility to treatment with cytokines and nitric oxide (NO). Tumour necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity on L-929 cells, interleukin-6 (IL-6) and interferon-gamma (IFN-gamma) were assayed by enzyme-linked immunosorbent assay (ELISA), whereas NO levels were detected by Griess colorimetric reactions in the culture supernatant of macrophages incubated with IFN-gamma, TNF or NO and subsequently exposed to either BCG-I or BCG-S. We found that BCG-I and BCG-S bacilli showed different ability to simulate peritoneal macrophages. Similar levels of IL-6 were detected in stimulated macrophages with lysate from two BCG samples. The highest levels of TNF and IFN-gamma were observed in macrophages treated with BCG-S and BCG-I, respectively. The highest levels of NO were observed in cultures stimulated for 48 h with BCG-S. We also found a different susceptibility of the bacilli to exogenous treatment with IFN-gamma and TNF which were capable of killing 60 and 70% of both bacilli, whereas NO was capable of killing about 98 and 47% of BCG-I and BCG-S, respectively. The amount of bacilli proportionally decreased with IFN-gamma and TNF, suggesting a cytokine-related cytotoxic effect. Moreover, NO also decreased the viable number of bacilli. Interestingly, NO levels of peritoneal macrophages were significantly increased after cytokine treatment. This indicates that the treatment of macrophages with cytokines markedly reduced bacilli number and presented effects on NO production. The results obtained here emphasize the importance of adequate stimulation for guaranteeing efficient killing of bacilli. In this particular case, the IFN-gamma and TNF were involved in the activation of macrophage bactericidal activity.  相似文献   

4.
Biological activities of human tumor necrosis factor (TNF) and its derivatives were compared. In cytotoxicity assay with L929 cells, one derivative, designated as TNF(Asn), showed significantly lower activity than any other TNF examined. In binding assay, this derivative was also shown to have lower affinity for TNF receptors on L929 cells, suggesting that the cytotoxic activity of TNFs on L929 cells correlates with their affinity for receptors. We also found that the cytotoxic activity of TNF on A673 cells and its inhibitory effect on lipoprotein lipase were parallel with the cytotoxic activity on L929 cells, but the growth-enhancing activity on FS-4 cells and the cytotoxic activity on endothelial cells were not. It was also shown that TNF(Asn) had lower affinity than any other TNF for receptors on these target cells tested. These results suggested that there might be at least two types of cellular responses to TNF; one might correlate with the receptor-binding affinity of TNFs and the other not.  相似文献   

5.
The susceptibility of bacteria-infected fibroblasts to the cytotoxic action of tumor necrosis factor was investigated. L cells infected with Shigella flexneri, Salmonella typhimurium, or Listeria monocytogenes, had an enhanced susceptibility to the cytotoxic activity of TNF-alpha. This enhanced susceptibility was dependent upon the challenge dose of bacteria, the concentration of TNF, and upon the exposure time of bacteria-infected cells to TNF. L cells infected with S. flexneri were susceptible to the cytotoxic action of TNF at 2 to 6 h after bacterial infection. In contrast, L cells infected with S. typhimurium or L. monocytogenes did not show enhanced susceptibility to TNF until 14 h postbacterial infection and exposure to TNF. Enhanced susceptibility to TNF was dependent on bacterial invasion because fibroblasts pretreated with a noninvasive isogenic variant of S. flexneri, UV-treated invasive bacteria, bacterial cultural supernatant, or bacteria LPS were no more susceptible to TNF than untreated cells. Enhanced susceptibility to TNF by bacteria-infected cells was not unique to L cells. Mouse embryo fibroblasts and HeLa cells also showed similar reactivities after bacteria infection. Bacteria-infected cells were greatly suppressed in host cell protein synthesis that may play an important role in their enhanced susceptibility to TNF. These results suggest that an important role of TNF in host defense against bacterial infections is its cytotoxic activity against bacteria-infected cells.  相似文献   

6.
To elucidate the cytotoxic mechanism of tumor necrosis factor (TNF), we isolated TNF-resistant sublines of L929 cells. As compared with L929 cells, TNF-resistant cells retained similar number and affinity of TNF-binding sites, and showed a similar growth rate. TNF stimulated arachidonate release from L929 cells, while no stimulation was observed at all in TNF-resistant cells tested. The cytotoxic action of TNF on L929 cells was inhibited by indomethacin, suggesting that prostaglandin may be involved in the action. Therefore, TNF-stimulated prostaglandin production was examined in L929 and TNF-resistant sublines. The amount of PGE2 produced by L929 cells was increased more than 5-fold after the addition of TNF, whereas the amount of PGE2 did not change in the resistant sublines following addition of the factor. TNF-stimulated arachidonate release and PGE2 production were reversed by islet-activating protein (IAP)-treatment of L929 cells. These results suggest that arachidonate release and subsequent prostaglandin production are important for the cytotoxic action of TNF and that these processes are mediated by GTP-binding protein (G protein) that is coupled to the TNF-receptor.  相似文献   

7.
Macrophage tumoricidal activity relies, mainly, on the release of Tumor Necrosis Factor alpha (TNFα) and/or on reactive oxygen or nitrogen intermediates. In the present work, we investigated the cytotoxic activity of resident peritoneal macrophages against L929 fibrosarcoma cell line in vitro and in vivo. Resident macrophages lysed L929 cells in a mechanism independent of TNFα and cell-to-cell contact. The cytotoxic activity was largely dependent on nitric oxide (NO) release since treatment with L-NAME (NOS inhibitor) inhibited L929 cells killing. Macrophages from mice with targeted deletion of inducible NO synthase (iNOS) together with L929 cells produced less NO and displayed lower, but still significant, tumoricidal activity. Notably, NO production and tumor lysis were abolished in co-cultures with macrophages deficient in Interferon Regulatory Factor, IRF-1. Importantly, the in vitro findings were reproduced in vivo as IRF-1 deficient animals inoculated i.p with L929 cells were extremely susceptible to tumor growth and their macrophages did not produce NO, while WT mice killed L929 tumor cells and their macrophages produced high levels of NO. Our results indicate that IRF-1 is a master regulator of bi-directional interaction between macrophages and tumor cells. Overall, IRF-1 was essential for NO production by co-cultures and macrophage tumoricidal activity in vitro as well as for the control of tumor growth in vivo.  相似文献   

8.
Interleukin 1 (IL-1) is a soluble factor secreted by stimulated monocytes (Mo) and animal macrophages (Mx). We have previously demonstrated that human Mo cultured in vitro for 1-6 days transform to Mx, and retain their ability to support concanavalin A (Con A)-driven T-cell proliferation. We have also shown that, paradoxically, these Mx do not secrete IL-1, when stimulated by endotoxin (LPS). In this study we examined two alternative hypotheses: T cells plus mitogen induce Mx IL-1 production, and human Mx deliver a second signal to T cells via a non-IL-1 mechanism. IL-1 was assayed in a mouse CD-1 thymocyte system without concanavalin A. Mo/Mx were cultured with T cells at low (2 X 10(4)/200 microliters) or high (1 X 10(5)/200 microliters) concentrations for 2 or 4 days, in the presence of Con A. Six hours prior to quantitation of proliferation, 50 microliters of supernatant was removed and assayed for IL-1. As expected both Mo and Mx enhanced T-cell proliferation eight- to tenfold. Mo secreted large amounts of IL-1; there was no demonstrable IL-1 activity present in supernatants from cultures containing either T cells and Mx, or Mx alone. Similar results were obtained by preincubating the cells (Mo, Mx, and T cells) with Con A for 12 hr and removing Con A prior to a 36-hr coculture. We examined the possibility that a small amount of IL-1 may be able to support Con A-stimulated T-cell proliferation and yet may not induce thymocyte proliferation. The highest dilutions of Mo supernatant (1:125) which supported T-cell proliferation also caused a fivefold increase in thymocyte proliferation. Supernatants from Mx failed to stimulate thymocyte proliferation or support Con A-driven T-cell proliferation. However, Mo and Mx lysates contain Il-1 activity. We conclude that human Mx support Con A-induced T-cell proliferation in the absence of IL-1 secretion. Mx may support T-cell proliferation by cell-bound IL-1 or by a non-IL-1 mechanism.  相似文献   

9.
Monoclonal-nonspecific suppressor factor (MNSF), a product of murine T cell hybridoma, suppresses antibody response to lipopolysaccharide. In an attempt to clarify the functional mechanisms in vitro, we investigated the mode of action of MNSF. This factor inhibited the antibody response by B cells (depleting T cells and M?), thereby indicating that the lymphokine acts directly on B cells, without interaction between B and T cells or M?. MNSF activity was absorbed by mitogen-stimulated T or B cells, but not by resting lymphocytes. Proliferative responses to T cell and B cell mitogens were inhibited dose dependently by the addition of MNSF. Kinetic studies showed that MNSF suppressed the antibody response, in all culture periods, thereby indicating that immunoglobulin secretion and proliferation were inhibited. The effect of growth factor on MNSF-mediated suppression was investigated to search for a possible suppression of MNSF action. Interleukin 2 (IL-2) remarkably inhibited MNSF activity, and the effect of IL-1 or IL-4 was less. IL-2 was most effective when added on the fourth day of culture. MNSF also inhibits division in the plasmacytoma line MOPC-31C or in thymoma EL4, but not in L929 fibroblasts. Tumor necrosis factor (TNF) inhibits cell division of various tumor cells and suppresses the pokeweed mitogen-induced antibody response, without cytotoxic action, as does MNSF. While MNSF and TNF have similar biochemical and physiochemical properties, the cross-reaction tests showed that both are antigenically discrete lymphokines. Although MNSF lacks TNF activity, the concomitant addition of both factors to L929 increases the cytotoxic action, a finding indicative of a synergistic effect.  相似文献   

10.
The influence of macrophage (M)-CSF on the production of inflammatory mediators has been examined in murine peritoneal macrophages. Cultures of macrophages treated with up to 30,000 U/ml of human rM-CSF or with 10,000 U/ml of L929-derived M-CSF did not reveal either PGE2, IL-1, or IL-6 secretion. In contrast, LPS, which served as a positive control, stimulated production of significant levels of PGE2, IL-1, and IL-6. Furthermore, Northern blot analysis of macrophage RNA revealed a strong induction of IL-1 alpha and IL-6 mRNA by LPS but not by M-CSF. Conditioned medium from macrophage cultures treated with purified L929 or human rM-CSF in combination with LPS exhibited a significant reduction of IL-1 bioactivity as compared with an LPS challenge alone. To investigate the mechanism involved in this M-CSF-dependent reduction of IL-1 bioactivity, we measured IL-1 alpha gene expression. The addition of M-CSF to LPS-treated macrophages did not affect IL-1 alpha mRNA levels suggesting that M-CSF may regulate production of an IL-1 inhibitor. This hypothesis was shown to be valid because removal of IL-1 alpha from conditioned medium of LPS plus M-CSF-treated cells allowed the detection of a nondialyzable factor that blocked IL-1-dependent thymocyte proliferation. The inhibitor appeared to be specific because it did not inhibit IL-2 and TNF bioactivities. Furthermore, this IL-1 inhibitor, which binds to cells and not to IL-1, competed with the binding of radioactive IL-1 alpha or beta to EL-4.6.1 cells. The results demonstrate that M-CSF alone does not induce proinflammatory mediators and PGE2 as was previously published. The data also suggest that M-CSF may play a role in the down-regulation of inflammatory responses.  相似文献   

11.
Evidence against the existence of a membrane form of murine IL-1 alpha   总被引:3,自引:0,他引:3  
Previous studies have demonstrated that paraformaldehyde-treated macrophages possess IL-1 alpha activity in a variety of bioassay systems. However, no definitive biochemical data in support of the membrane IL-1 alpha concept has been reported. The purpose of the present study was to determine if the biologic activity associated with treated cells is due to a membrane form of IL-1 alpha or alternatively, to the leakage of IL-1 alpha. If the former case was true, then the exposed membrane IL-1 alpha should bind anti-IL-1 alpha antibodies or be cleaved by mild trypsin treatment. In both instances, IL-1 alpha activity should be lost when measured in a subsequent IL-1 bioassay. Our results indicate that pulsing paraformaldehyde-treated normal or cell line macrophages with anti-IL-1 alpha antibodies or treating the cells with trypsin did not affect the ability of the treated cells to function in a murine thymocyte proliferation assay. Furthermore, the standard short term treatment of cells with paraformaldehyde (15 min) did not prevent the leakage of IL-1 alpha from the cells or the processing of the precursor forms of the protein. When cells were treated with paraformaldehyde for 2 h, they no longer released IL-1 alpha or possessed thymocyte stimulatory activity. We also found that short term glutaraldehyde treatment of macrophages completely blocked the release of IL-1 alpha from cells as well as the appearance of cell-associated IL-1 alpha activity. Our results support the conclusion that the stimulatory activity of paraformaldehyde-treated macrophages is not due to a membrane form of IL-1 alpha but is, in fact, due to the continuous release of IL-1 alpha from the cells.  相似文献   

12.
Previous work from our laboratory has shown that rabbit articular chondrocytes, like macrophages, produce reactive oxygen intermediates, express Ia antigen, and can mediate immunologic functions such as antigen presentation and induction of mixed and autologous lymphocyte reactions. We were interested in seeing if these cells could secrete interleukin-1 (IL-1) or express membrane form of IL-1 (mIL-1). Using the standard C3H/HeJ thymocyte assay, neither secreted IL-1 nor mIL-1 activity was detected in untreated or LPS-treated chondrocytes. However, the D10.G4.1 proliferation assay showed that chondrocytes, stimulated with LPS, secrete IL-1 and express the mIL-1 in a dose- and time-dependent manner. The IL-1 activity in LPS-stimulated chondrocyte supernatant and on fixed cells could be inhibited by anti-IL-1 antibodies. Sephadex G-75 chromatography of pooled, concentrated LPS culture supernatant resolved into two peaks of IL-1 activity at 13-17 and at 45-70 kDa, respectively. The bioactivity of chromatographic fractions were similar using both the thymocyte and D10.G4.1 bioassays. Western blot analysis of chondrocyte supernatant detects 17-kDa IL-1 beta; no processed 17-kDa IL-1 alpha was seen but IL-1 alpha-specific reactivity was observed at 64 kDa. Immunoblot analysis of chondrocyte lysates shows that cell-associated IL-1 is IL-1 alpha and is 37 kDa in size. PCR analysis shows the presence of mRNA for IL-1 beta and IL-1 alpha in LPS-treated cells; IL-1 beta mRNA was detected in untreated chondrocytes. The inability to detect IL-1 by the thymocyte assay is due to the presence of a chondrocyte inhibitor of IL-1 that can be demonstrated in cell sonicates, supernatants, and on paraformaldehyde-fixed chondrocytes. Chromatography of LPS-stimulated supernatant showed a peak of IL-1 inhibitory activity at 21-45 kDa. Chondrocytes which secrete IL-1 and express mIL-1 could play a critical role in maintaining chronic inflammation in rheumatoid arthritis. Therefore, the ability of chondrocytes to produce both IL-1 and an inhibitor to IL-1 is important in interpreting the mechanism of cartilage matrix maintenance and degradation.  相似文献   

13.
L929, a murine fibrosarcoma cell line highly sensitive to the anti-proliferative and cytotoxic action of tumour necrosis factor (TNF), was used as a target cell in our studies. We [Suffys et al. (1987) Biochem. Biophys. Res. Commun. 149, 735-743], as well as others, have previously provided evidence that a phospholipase (PL), most probably a PL-A2-type enzyme, is likely to be involved in TNF-mediated cell killing. We now further document this conclusion and provide suggestive evidence that the enzyme activity specifically involved in TNF cytotoxicity differs from activities associated with the eventual cell death process itself or with non-toxic serum treatment. We also show that the 5,8,11,14-icosatetraenoic acid (arachidonic acid, delta 4 Ach) released by PL, and possibly metabolized, is unlikely to be a key mediator of the TNF-mediated cytotoxicity. These conclusions are based on the following experimental findings. 1. TNF treatment of cells, prelabelled for 24 h with [3H] delta 4Ach or [14C] delta 3Ach (delta 3Ach identical to 5,8,11-icosatrienoic acid) resulted in an early, time-dependent and concentration-dependent release of radioactivity in the supernatant preceding actual cell death. The extent of this response was moderate, albeit reproducible and significant. Analysis of the total lipid fraction from cells plus supernatant revealed that only release of arachidonic acid from phospholipids, but not its metabolization was induced by TNF. However, the release of less unsaturated fatty acids, such as linoleic acid (Lin) or palmitic acid (Pam), was not affected during the first hours after TNF addition. 2. An L929 subclone, selected for resistance to TNF toxicity, was found to be defective in TNF-induced delta 4Ach libration. 3. Interleukin-1 (IL1) was not cytotoxic for L929 and did not induce release of delta 4Ach. 4. Release of delta 4Ach was not restricted to TNF; the addition of serum to the cells also induced release of fatty acids into the medium. In this case, however, there was no specificity, as all fatty acids tested, including Lin and Pam, were released. 5. Inhibition of PL-A2 activity by appropriate drugs markedly diminished TNF-induced delta 4Ach release and resulted also in a strong decrease in TNF-induced cytotoxicity. 6. Other drugs, including serine protease inhibitors, which strongly inhibit TNF-induced cytotoxicity, also decreased the TNF-induced delta 4Ach release, whereas LiCl potentiated both TNF-mediated effects. 7. Protection of cells against TNF toxicity by means of various inhibitors was not counteracted by addition of exogenous fatty acids, including delta 4Ach.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Human monocytes, human peritoneal macrophages, mouse peritoneal macrophages and human peripheral neutrophils pretreated with beta-1,3-D-polyglucose derivatives showed pronounced bactericidal capacity to Escherichia coli compared to control cells. The increased bactericidal capacity was detectable in mononuclear phagocytes over a wide range of concentrations of bacteria. Granulocytes, however, showed bactericidal capacity only at low concentrations of bacteria. The pretreated mononuclear phagocytes released significant amounts of IL-1 and PGE2. However, there was no significant release of tumor necrosis factor (TNF). By incubating unstimulated cells with purified IL-1 and TNF, the bactericidal activity of neutrophils and mononuclear phagocytes was enhanced. Our data indicate that the inability of neutrophils stimulated with beta-1,3-D-polyglucose derivatives to kill large numbers of bacteria could be overcome by a combined treatment with purified IL-1 or TNF in addition to beta-1,3-D-polyglucose derivatives. By incubating unstimulated cells with medium from beta-1,3-D-polyglucose-treated human peritoneal macrophages, the bactericidal activity of the cells was enhanced to the same extent as cells pretreated with purified TNF and IL-1. Cells incubated with IL-1-depleted medium from beta-1,3-D-polyglucose-treated human peritoneal macrophages, showed reduced bactericidal activity compared to cells incubated with undepleted medium. These studies demonstrate that beta-1,3-D-polyglucose-treated mononuclear phagocytes and neutrophils show enhanced bactericidal activity. The enhanced activity is partly caused by stimulation of the cells with IL-1 released from mononuclear phagocytes and partly by other unknown effects of beta-1,3-D-polyglucose derivatives on both mononuclear phagocytes and neutrophils.  相似文献   

15.
THE purpose of this study was to investigate the effects of Tityus serrulatus venom (TSV) on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2) and nitric oxide (NO) in supernatants of peritoneal macrophages. Several functional bioassays were employed including an in vitro model for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6) and interferon-gamma (IFN-gamma) were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-gamma. Incubation of macrophages with TSV increased production of IL-6 and IFN-gamma in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-gamma. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2 release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functions in vitro.  相似文献   

16.
The role of mannose receptors from hepatic sinusoidal endothelium (HSE) in liver colonization by B16 melanoma (B16M) cells was studied. The expression of high mannose-type oligosaccharides on the surface of B16M cells was enhanced by in vitro treatment with 1-deoximannojirimycin (1-DMM). There was a significant (P < 0.01) enhancement of hepatic metastasis when B16M cells were 1-DMM-treated before being intrasplenically injected into C57BL/6J mice. Intraperitoneal administration of 5 mg/kg recombinant human interleukin-1 receptor antagonist (rHuIL-1Ra) inhibited the 1-DMM-induced enhancement of metastasis. Expression of high mannose-type oligosaccharides on the surface of 1-DMM-treated B16M cells and their in vitro adhesion to the HSE was significantly correlated (R = 0.82). The addition of either 100 μg/ml mannan or paraformaldehyde (PFA)-fixed 1-DMM-treated B16M cells to cultured HSE for a period of 12 h significantly (P < 0.01) increased the release of IL-1β from the HSE compared to that liberated by the HSE incubated with either basal medium or PFA-fixed untreated B16M cells. The same HSE treatments also significantly (P < 0.01) increased the degree of adhesion of other B16M cells to HSE, being abrogated by anti-mouse vascular cell adhesion molecule-1 (VCAM-1) antibodies. The conditioned media from HSE cultures, activated by PFA-fixed, 1-DMM-treated B16M cells significantly (P < 0.01) increased B16M cell proliferation when compared to conditioned media from HSE cultures incubated with PFA-fixed, untreated B16M cells. Thus, 1-DMM treatment of B16M cells enhanced the development of hepatic metastasis by IL-1-dependent mechanisms. The mechanism is consistent with in vitro mannose receptor-mediated melanoma cell attachment to the HSE, which subsequently upregulates IL-1β release, VCAM-1-dependent adherence, and melanoma growth factor(s) release by HSE. J. Cell. Physiol. 174:322–330, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The role of prostaglandins in the regulation of lipopolysaccharide (LPS)-induced interleukin-1 (IL-1) production by murine C3H/HeN resident peritoneal macrophages was studied. IL-1 production was initially studied in the presence of piroxicam and indomethacin, both inhibitors of prostaglandin biosynthesis. IL-1 was assayed using the IL-1-dependent proliferative response of C3H/HeJ thymocytes. LPS stimulation resulted in 15 to 20 ng/ml of prostaglandin E2 (PGE2) produced in the first hour of culture. IL-1-containing supernatants from drug-treated macrophages at dilutions of up to 1:32 resulted in enhanced thymocyte proliferation compared to control, non-drug-treated cultures and contained less than 2 ng/ml of PGE2. Similar enhancement of proliferation could be obtained by incubating non-drug-treated supernatants with monoclonal anti-PGE2 but not anti-thromboxane B2 (TxB2) antibody. Further dilutions of the drug-treated supernatants gave thymocyte proliferation responses which were indistinguishable from control cultures and, correspondingly, had identical values for IL-1 production. The absence of an effect on IL-1 production was confirmed by quantitation of intracellular IL-1 alpha using goat anti-IL-1 alpha antibody and by quantitation of supernatant IL-1 receptor competition assay. Exogenous PGE2, in the concentration range produced in macrophage supernatants (10-20 ng/ml), directly inhibited IL-1-stimulated thymocyte proliferation. Finally, when macrophages were stimulated with LPS for 24 hr in the presence of added PGE2, thymocyte proliferation was inhibited at the lowest supernatant dilutions, but as the IL-1-containing supernatants were diluted out, the assay curves were indistinguishable from non-PGE2-treated control. Thus, in this system, PGE2 has no effect on IL-1 synthesis, but rather has a direct inhibitory effect on thymocyte proliferation. Nonsteroidal anti-inflammatory drugs are not stimulating IL-1 production but are, in fact, relieving inhibition of the thymocyte IL-1 assay caused by the presence of prostaglandins.  相似文献   

18.
We examined the cytolytic mechanisms of activated macrophages by using proteose peptone- or thioglycollate broth-induced mouse peritoneal macrophages or mouse macrophage hybridomas as effector cells, L.P3 cells, a clone of L929 cells, and P815 cells as target cells, and IFN-gamma and LPS as activators. It was determined that TNF is the main cytolytic molecule against L.P3 cells from the following results: 1) activated macrophages can produce TNF; 2) TNF shows cytotoxic activity against L.P3 cells; 3) the addition of anti-TNF antibody inhibited most of the cytolytic activity of activated macrophages against L.P3 cells. On the other hand, it was concluded that the main cytolytic mechanism against P815 cells is the production of NO2-/NO3- from L-arginine, from the following results: 1) activated macrophages can produce NO2-; 2) NaNO2 shows high cytotoxic activity against P815 cells; 3) the depletion of L-arginine from the medium inhibited most of the cytolytic activity of activated macrophages against P815 cells and NO2- production by activated macrophages. In this study, however, cytostatic effects of L-arginine-dependent effector mechanism were not studied. Thus, these results show that activated macrophages can express at least two cytolytic mechanisms independently, namely, the one that appears to be mediated by the L-arginine-dependent effector mechanism and the second that appears to be mediated directly by TNF. Furthermore, it was demonstrated that TNF and L-arginine-dependent NO2- production act synergistically as killing mechanisms of activated macrophages. These mechanisms can explain the cytolytic activity of activated macrophages against a variety of target cells.  相似文献   

19.
The antimalignant cell activity of tumor necrosis factor (TNF) in many cell types can be enhanced by lithium chloride (LiCl). This study shows the in vitro effect of LiCl on the TNF-induced or interleukin 1 (IL-1)-induced expression of IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-3, IL-2, and the IL-2 receptor-alpha (IL-2R alpha). The levels of IL-6 and GM-CSF in the medium of TNF-treated L929 fibrosarcoma cells were increased by cotreatment with LiCl. In contrast, enhancement of IL-6 production by dibutyryl cyclic AMP or cycloheximide was not affected by LiCl. The production of IL-6 and GM-CSF was not correlated with sensitivity to TNF-mediated cell killing. IL-1 by itself had no measurable effects on L929 cells. However, LiCl potentiated the IL-1-induced synthesis of IL-6, GM-CSF, IL-3, and IL-2 in PC60 murine T-cell hybridoma cells. TNF alone induced only GM-CSF production in these cells, but in the presence of LiCl, increased amounts of GM-CSF as well as small amounts of IL-2 and IL-6 could be detected. It is also shown that in these PC60 cells the expression of the IL-2R alpha was induced by TNF + LiCl treatment but not by TNF alone. IL-2R alpha expression was likewise considerably enhanced by IL-1 + LiCl treatment, as compared with treatment with IL-1 alone. The effects of LiCl on the TNF-induced and the IL-1-induced gene expression seem to be independent of the protein kinase A and C pathways. These results show that LiCl can modulate both TNF-mediated cytotoxicity and TNF-induced and IL-1-induced cytokine expression, suggesting that Li+ acts early in the TNF-signaling pathway, but at a step shared with the IL-1-signaling pathway.  相似文献   

20.
The SPI-802 human leukemia cell line, which possesses E receptors and used to have natural killer activity, has been demonstrated to produce high levels of interleukin 1 (IL-1)-like activity. SPI-802 supernatants prepared in 1% serum-containing cultures with lipopolysaccharide stimulation, like similarly prepared adherent-cell-derived IL-1, enhanced phytohemagglutinininduced mouse thymocyte proliferation. When adherent-cell IL-1 gave 50% maximum activity at a reciprocal dilution of 20, SPI-802 supernatant gave it at 200, indicating the production of high levels of IL-1-like activity by the cell line. SPI-802 supernatant promoted the production of interleukin 2 (IL-2) by the Jurkat-F1884 T-cell line: Levels of IL-2 activity obtained with 15% SPI-802 supernatant were almost equivalent to those obtained with 50% adherent-cell IL-1 as estimated by the maximum proliferation of IL-2-dependent cytotoxic T cells. SPI-802 supernatant by itself exhibited no IL-2 activity. Major IL-1-like activity of SPI-802 supernatant was present in fractions from AcA54 columns corresponding to M, 12,000–20,000 and 60,000–70,000 and resolved on isoelectrofocusing into two distinct species with pI values of 5.0 and 7.0, being consistent with the results of adherent-cell IL-1. The SPI-802 cell line having E receptors is an ideal source of a soluble factor with the biological and biochemical Characteristics of human IL-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号