首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although neurofilaments are among the most highly phosphorylated proteins extant, relatively little is known about the kinases involved in their phosphorylation. The majority of the phosphates present on the two higher-molecular-mass neurofilament subunits are added to multiply repeated sequence motifs in the tail. We have examined the specificity of a neurofilament-associated kinase (NFAK) partially purified from chicken spinal cord that selectively phosphorylates the middle-molecular-mass neurofilament subunit, NF-M. Two-dimensional phosphopeptide mapping of 32P-labeled NF-M shows that, in vitro, NFAK phosphorylates a subset of peptides phosphorylated in vivo in cultured neurons. The absence of a complete complement of labeled phosphopeptides following in vitro phosphorylation, compared with phosphorylation in vivo, is not due to a lack of availability of phosphorylation sites because the same maps are obtained when enzymatically dephosphorylated NF-M is used as an in vitro substrate. Phosphopeptide maps from in vitro-phosphorylated NF-M and those from a recombinant fusion protein containing only a segment of the tail piece of chicken NF-M reveal identical labeled peptides. The fusion protein lacks a segment containing 17 KXX(S/T)P putative phosphorylation sites contained in the tail of chicken NF-M but contains a segment that includes four KSPs and a KSD site also present in the intact tail. These results suggest (a) that NFAK mediates the phosphorylation of some, but not all, potential phosphorylation sites within the tail of NF-M and (b) that multiple kinases are necessary for complete phosphorylation of the NF-M tail.  相似文献   

2.
The 70-kDa neurofilament protein subunit (NF-L) is phosphorylated in vivo on at least three sites (L1 to L3) (Sihag, R. K. and Nixon, R. A. (1989) J. Biol. Chem. 264, 457-464). The turnover of phosphate groups on NF-L during axonal transport was determined after the neurofilaments in retinal ganglion cells were phosphorylated in vivo by injecting mice intravitreally with [32P]orthophosphate. Two-dimensional phosphopeptide maps of NF-L from optic axons of mice 10 to 90 h after injection showed that radiolabel decreased faster from peptides L2 and L3 than from L1 as neurofilaments were transported. To identify phosphorylation sites on peptide L2, axonal cytoskeletons were phosphorylated by protein kinase A in the presence of heparin. After the isolated NF-L subunits were digested with alpha-chymotrypsin, 32P-peptides were separated by high performance liquid chromatography on a reverse-phase C8 column. Two-dimensional peptide mapping showed that the alpha-chymotrypsin 32P-peptide accepting most of the phosphates from protein kinase A migrated identically with the in vivo-labeled phosphopeptide L2. The sequence of this peptide (S-V-R-R-S-Y) analyzed by automated Edman degradation corresponded to amino acid residues 51-56 of the NF-L sequence. A synthetic 13-mer (S-L-S-V-R-R-S-Y-S-S-S-S-G) corresponding to amino acid residues 49-61 of NF-L was also phosphorylated by protein kinase A. alpha-Chymotryptic digestion of the 13-mer generated a peptide which contained most of the phosphates and co-migrated with the phosphopeptide L2 on two-dimensional phosphopeptide maps. Edman degradation of the phosphorylated 13-mer identified serine residue 55 which is located within a consensus phosphorylation sequence for protein kinase A as the major site of phosphorylation. Since protein kinase A-mediated phosphorylation influences intermediate filament assembly/disassembly in vitro, we propose that the phosphopeptide L2 region is a neurofilament-assembly domain and that the cycle of phosphorylation and dephosphorylation of Ser-55 on NF-L, which occurs relatively early after subunit synthesis in vivo, regulaaes a step in neurofilament assembly or initial interactions during axonal transport.  相似文献   

3.
Abstract : We have shown previously that phosphate groups on the amino-terminal head domain region of the middle molecular mass subunit of neurofilament proteins (NF-M) are added by second messenger-dependent protein kinases. Here, we have identified Ser23 as a specific protein kinase A phosphorylation site on the native NF-M subunit and on two synthetic peptides, S1 (14RRVPTETRSSF24) and S2 (21RSSFSRVSGSPSSGFRSQSWS41), localized within the amino-terminal head domain region. Ser23 was identified as a phosphorylation site on the 32P-labeled α-chymotryptic peptide that carried >80% of the 32P-phosphates incorporated into the NF-M subunit by protein kinase A. The synthetic peptides S1 and S2 were phosphorylated 18 and two times more efficiently by protein kinase A than protein kinase C, respectively. Neither of the peptides was phosphorylated by casein kinase II. The sequence analyses of the chemically modified phosphorylated serine residues showed that Ser23 was the major site of phosphorylation for protein kinase A on both S1 and S2 peptides. Low levels of incorporation of 32P-phosphates into Ser22, Ser28, and Ser32 by protein kinase A were also observed. Protein kinase C incorporated 32P-phosphates into Ser22, Ser23, Ser25, Ser28, Ser32, and a threonine residue, but none of these sites could be assigned as a major site of phosphorylation. Analyses of the phosphorylated synthetic peptides by liquid chromatography-tandem mass spectrometry also showed that protein kinase A phosphorylated only one site on peptide S1 and that ions with up to four phosphates were detected on peptide S2. Analysis of the data from the tandem ion trap mass spectrometry by using the computer program PEPSEARCH did not unequivocally identify the specific sites of phosphorylation on these serine-rich peptides. Our data suggest that Ser23 is a major protein kinase A-specific phosphorylation site on the amino-terminal head region of the NF-M subunit. Phosphorylation of Ser23 on the NF-M subunit by protein kinase A may play a regulatory role in neurofilament assembly and/or the organization of neurofilaments in the axon.  相似文献   

4.
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.  相似文献   

5.
Abstract: We have shown previously that a neurofilament (NF)-associated kinase (NFAK) extracted from chicken NF preparations phosphorylates selectively the middle molecular mass NF subunit (NF-M). Here we show that the major kinase activity in NFAK is indistinguishable from enzymes of the casein kinase I (CKI) family based on the following criteria: (1) inhibition of NFAK phosphorylation by the selective CKI inhibitor CKI-7, (2) the similarity in substrate specificity of NFAK and authentic CKI, (3) the correspondence of two-dimensional phosphopeptide maps of NF-M phosphorylated in vitro by NFAK with those generated by CKI under similar conditions, and (4) immunological cross-reactivity of NFAK with an antibody raised against CKI. We have also identified Ser502, Ser528, and Ser536 as phosphorylation sites by NFAK/CKI in vitro, each of which is also phosphorylated in vivo. All three serines are found in peptides with CKI phosphorylation consensus sequences, and Ser528 and Ser536 and flanking amino acids are highly conserved in higher vertebrate NF-M sequences. Neither Ser502 nor Ser536 has been identified previously as NF-M phosphorylation sites.  相似文献   

6.
The herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 is a 63-kDa phosphoprotein required for viral replication. ICP27 has been shown to contain both stable phosphate groups and phosphate groups that cycle on and off during infection (K. W. Wilcox, A. Kohn, E. Sklyanskaya, and B. Roizman, J. Virol. 33:167-182, 1980). Despite extensive genetic analysis of the ICP27 gene, there is no information available about the sites of the ICP27 molecule that are phosphorylated during viral infection. In this study, we mapped several of the phosphorylation sites of ICP27 following in vivo radiolabeling. Phosphoamino acid analysis showed that serine is the only amino acid that is phosphorylated during infection. Two-dimensional phosphopeptide mapping showed a complex tryptic phosphopeptide pattern with at least four major peptides and several minor peptides. In addition, ICP27 purified from transfected cells yielded a similar phosphopeptide pattern, suggesting that cellular kinases phosphorylate ICP27 during viral infection. In vitro labeling showed that protein kinase A (PKA), PKC, and casein kinase II (CKII) were able to differentially phosphorylate ICP27, resulting in distinct phosphopeptide patterns. The major phosphorylation sites of ICP27 appeared to cluster in the N-terminal portion of the protein, such that a frameshift mutant that encodes amino acids 1 to 163 yielded a phosphopeptide pattern very similar to that seen with the wild-type protein. Further, using small deletion and point mutations in kinase consensus sites, we have elucidated individual serine residues that are phosphorylated in vivo. Specifically, the serine at residue 114 was highly phosphorylated by PKA and the serine residues at positions 16 and 18 serve as targets for CKII phosphorylation in vivo. These kinase consensus site mutants were still capable of complementing the growth of an ICP27-null mutant virus. Interestingly, phosphorylation of the serine at residue 114, which lies within the major nuclear localization signal, appeared to modulate the efficiency of nuclear import of ICP27.  相似文献   

7.
Phosphorylation of neurofilament proteins by protein kinase C   总被引:9,自引:0,他引:9  
R K Sihag  A Y Jeng  R A Nixon 《FEBS letters》1988,233(1):181-185
The low molecular mass (70 kDa) subunit of neurofilaments (NF-L) contains at least three phosphorylation sites in vivo and is phosphorylated by multiple kinases in a site-specific manner [(1987) J. Neurochem. 48, S101; Sihag, R.K. and Nixon, R.A. submitted]. In this study, we observed that the three subunits of neurofilament proteins from retinal ganglion cell neurons are substrates for purified mouse brain protein kinase C. Two-dimensional alpha-chymotryptic phosphopeptide map analyses of the NF-L subunit demonstrated that protein kinase C phosphorylates four polypeptide sites, two of which incorporate phosphate when retinal ganglion cells are pulse-radiolabeled with [32P]orthophosphate in vivo.  相似文献   

8.
1. A neurofilament-enriched preparation from bovine spinal cord contains endogenous protein kinases that phosphorylate high, middle, and low molecular weight neurofilament subunits (NF-H, NF-M, and NF-L), as well as certain other endogenous and exogenous substrates. 2. Most of this associated kinase activity can be separated from the neurofilament subunits and the bulk of the protein by extraction of the neurofilament preparation with 0.8 M KCl. Assays using specific exogenous substrates, activators, and inhibitors for known kinases reveal significant levels of Ca2(+)-calmodulin-dependent, cyclic nucleotide-dependent, Ca2(+)-phosphatidylserine diglyceride-dependent, and regulator-independent kinase activities in the high-salt extract. 3. Fractionation of the salt extract on a gel filtration column resolves a regulator-independent kinase activity identified by its ability to phosphorylate purified NF-M. This preparation can phosphorylate all three neurofilament proteins either in purified form or in the assembled form, as well as alpha-casein. Only the regulator-independent kinase activity in this fraction is responsible for the phosphorylation of neurofilament proteins. 4. While this partially purified kinase activity does not show a strong substrate specificity between the three neurofilament subunits, the phosphorylation pattern it produces upon incubation with salt-extracted neurofilaments is similar to the regulator-independent phosphorylation pattern found in the original neurofilament preparation and, thus, represents a useful starting point for the further purification of this neurofilament-associated kinase activity.  相似文献   

9.
A combination of in vivo and in vitro approaches were used to characterize phosphorylation sites on the 70,000-kilodalton (kDa) subunit of neurofilaments (NF-L) and to identify the protein kinases that are likely to mediate these modifications in vivo. Neurofilament proteins in a single class of neurons, the retinal ganglion cells, were pulse-labeled in vivo by injecting mice intravitreously with [32P]orthophosphate. Radiolabeled neurofilaments were isolated after they had advanced along optic axons, and the individual subunits were separated on sodium dodecyl sulfate-polyacrylamide gels. Two-dimensional alpha-chymotryptic phosphopeptide map analysis of NF-L revealed three phosphorylation sites: an intensely labeled peptide (L-1) and two less intensely labeled peptides (L-2 and L-3). The alpha-chymotryptic peptide L-1 was identified as the 11-kDa segment containing the C terminus of NF-L. The ability of these peptides to serve as substrates for specific protein kinases were examined by incubating neurofilament preparations with [gamma-32P]ATP in the presence of purified cAMP-dependent protein kinase or appropriate activators and/or inhibitors of endogenous cytoskeleton-associated protein kinases. The heparin-sensitive, calcium- and cyclic nucleotide-independent kinase associated with the cytoskeleton selectively phosphorylated L-1 and L-3 but had little, if any, activity toward L-2. When this kinase was inhibited with heparin, cAMP addition to the neurofilament preparation stimulated the phosphorylation of L-2, and addition of the purified catalytic subunit of cAMP-dependent protein kinase induced intense labeling of L-2. At higher labeling efficiencies, the exogenous kinase also phosphorylated L-3 and several sites at which labeling was not detected in vivo; however, L-1 was not a substrate. Calcium and calmodulin added to neurofilament preparations in the presence of heparin modestly stimulated the phosphorylation of L-1 and L-3, but not L-2, and the stimulation was reversed by trifluoperazine. The selective phosphorylation of different polypeptide domains on NF-L by second messenger-dependent and -independent kinases suggests multiple functions for phosphate groups on this protein.  相似文献   

10.
A highly purified preparation of protein kinase FA (where FA is the activating factor for phosphatase 1)/glycogen synthase kinase 3 from rabbit muscle readily phosphorylated bovine neurofilaments. All three neurofilament proteins, the high, middle, and low molecular proteins (NF-H, NF-M, and NF-L), were phosphorylated when intact filaments were incubated with the kinase. Experiments with individual proteins showed that NF-M was the best substrate. At protein concentrations of 0.13 mg/ml, the initial rate of NF-M phosphorylation was 30% of that observed for glycogen synthase. Km values were 0.24 mg/ml (7 x 10(-7) M tetramer) for glycogen synthase and 0.10 mg/ml (5 x 10(-7) M dimer) for NF-M. Vmax values were 0.36 mumol/min/mg for glycogen synthase and 0.035 mumol/min/mg for NF-M. Dephosphorylated NF-M was phosphorylated only half as much as native NF-M; this is consistent with the known substrate specificity of the kinase. The possible involvement of FA/GSK-3 in the phosphorylation of neurofilaments in vivo is discussed.  相似文献   

11.
We sought the mammalian neurofilament tail domain-specific kinase. Several well known kinases including cAMP-dependent protein kinase, protein kinase C, Ca(2+)-calmodulin-dependent protein kinase II, casein kinase I, and casein kinase II phosphorylated the high (NF-H) and middle molecular mass subunit (NF-M) of bovine neurofilaments, but they did not reduced the electrophoretic mobility of the dephosphorylated form of NF-M and NF-H by phosphorylation nor was the amount of phosphorylation increased by dephosphorylation of NF proteins, indicating that the phosphorylation sites by these kinases are not major in vivo phosphorylation sites at the tail domain. In contrast, cdc2 kinase phosphorylated specifically the dephosphorylated form of NF-H. 4 mol of phosphates were incorporated per mol of NF-H and this phosphorylation returned the electrophoretic mobility of the dephosphorylated form of NF-H to the position of the isolated, fully phosphorylated form of NF-H. Furthermore, the phosphorylation by cdc2 kinase dissociated the binding of dephosphorylated NF-H to microtubules. Phosphorylation sites were located at the carboxyl-terminal tail domain. The KSPXK motif, but not KSPXX, in the repetitive sequence was suggested to be the phosphorylation site by using synthetic peptides.  相似文献   

12.
Microtubule-associated protein 2 (MAP2) is an excellent substrate for both cyclic-AMP (cAMP)-dependent and Ca2+/calmodulin-dependent kinases. A recently purified cytosolic Ca2+/calmodulin-dependent kinase (now designated CaM kinase II) phosphorylates MAP2 as a major substrate. We now report that microtubule-associated cAMP-dependent and calmodulin-dependent protein kinases phosphorylate MAP2 on separate sites. Tryptic phosphopeptide digestion and two-dimensional phosphopeptide mapping revealed 11 major peptides phosphorylated by microtubule-associated cAMP-dependent kinase and five major peptide species phosphorylated by calmodulin-dependent kinase. All 11 of the cAMP-dependently phosphorylated peptides were phosphorylated on serine residues, whereas four of five major peptides phosphorylated by the calmodulin-dependent kinase were phosphorylated on threonine. Only one peptide spot phosphorylated by both kinases was indistinguishable by both migration and phosphoamino acid site. The results indicate that cAMP-dependent and calmodulin-dependent kinases may regulate microtubule and cytoskeletal dynamics by phosphorylation of MAP2 at distinct sites.  相似文献   

13.
The ribosomal protein S6 in exocrine cells is phosphorylated during stimulation of exocytosis by cAMP-dependent or calcium-dependent agonists. Under both conditions the same tryptic S6 phosphopeptides (termed A, B, and C) were found [Padel, Kruppa, Jahn & S?ling (1983) FEBS Lett. 159, 112-118]. Studies have now been made of the phosphorylation pattern of protein S6 from purified guinea pig parotid ribosomes following in vitro phosphorylation with calmodulin-dependent, phospholipid-dependent, and cAMP-dependent protein kinases. Only the phospholipid-dependent enzyme led to the phosphorylation of peptides A, B, and C, while the cAMP-dependent enzyme phosphorylated only peptides A and C, and the calmodulin-dependent enzyme did not phosphorylate any of the phosphopeptides found in S6 from unstimulated or stimulated intact cells. Guinea pig parotid microsomes contain substantial phospholipid-dependent protein kinase activity. Stimulation of intact parotid glands with tetradecanoylphorbol acetate led to a significant phosphorylation of S6 and a similar tryptic S6 phosphopeptide pattern as seen with carbamoylcholine. It is concluded that activation of phospholipid-dependent protein kinase is responsible for the phosphorylation of protein S6 during stimulation with calcium-dependent and cAMP-dependent secretagogues.  相似文献   

14.
Neurofilaments (NFs) are neuron-specific intermediate filaments, and are the major cytoskeletal component in large myelinated axons. Lysine-serine-proline (KSP) repeats in the tail domains of high molecular weight NF proteins (NF-M and NF-H) are extensively phosphorylated in vivo in the axon. This phosphorylation in the tail domain has been postulated to play an important role in mediating neuron-specific properties, including axonal caliber and conduction velocity. Recent studies have shown that the mitogen-activated protein kinases (extracellular signal-regulated kinases, Erk1 and Erk2) phosphorylate KSP motifs in peptide substrates derived from the NF-M and NF-H tail domains in vitro. However, it is not clear whether activation of the mitogen activated protein (MAP) kinase pathway is able to phosphorylate these domains in vivo. To answer this question, a constitutively active form of mitogen-activated Erk activating kinase (MEK1) was cotransfected with an NF-M expression construct into NIH 3T3 cells. The activated mutant, but not the dominant negative mutant, induced phosphorylation of NF-M. In addition, it was shown that epidermal growth factor, which induces the MAP kinase cascade in NIH 3T3 cells, also activated endogenous Erk1 and Erk2 and NF-M tail domain phosphorylation in the transfected cells. These results present direct evidence that in-vivo activation of Erk1 and Erk 2 is sufficient for NF-M tail domain phosphorylation in transfected cells.  相似文献   

15.
Abstract: In previous studies we have identified Ser502, Ser528, and Ser534 as target sites in chicken neurofilament middle molecular mass protein (NF-M) for casein kinase I (CKI) in vitro and have shown that these sites are also phosphorylated in vivo. We now make use of a combination of molecular biological and protein chemical techniques to show that two additional in vivo phosphorylation sites in chicken NF-M, Ser464 and Ser471, can also be phosphorylated by CKI in vitro. These two sites are conserved in higher vertebrate NF-M molecules, and recombinant protein constructs containing the homologous rat NF-M peptides can be phosphorylated by CKI in vitro, suggesting that phosphorylation of these sites is conserved at least in higher vertebrates. The two new sites are adjacent to a conserved peptide sequence (VEE-IIEET-V) found once in higher vertebrate NF-M molecules and twice in lamprey NF-180. Variants of this sequence are also found in neurofilament low and high molecular mass proteins (NF-L and NF-H) and α-internexin, and in mammalian NF-L are known to be associated with in vivo phosphorylation sites. We speculate that CKI phosphorylation in general, and these sites in particular, may be important in neurofilament function.  相似文献   

16.
The carboxyl-terminal regions of neurofilament high (NF-H) and middle (NF-M) molecular weight proteins have been suggested to be phosphorylated in vivo by a p34cdc2-like protein kinase, on the basis of the in vivo phosphorylation site motif and in vitro phosphorylation of the proteins by p34cdc2 kinase (Hisanaga, S.I., Kusubata, M., Okumura, E. and Kishimoto, T. (1991) J. Biol. Chem. 266, 21798-21803). A novel proline-directed protein kinase previously identified and purified from bovine brain has been found in this study to phosphorylate NF-H and NF-M at sites identical to those phosphorylated by HeLa cell p34cdc2 kinase. The proline-directed kinase is composed of a 33-kDa and a 25-kDa subunit. The 33-kDa kinase subunit was partially sequenced, and degenerate oligonucleotide primers corresponding to the amino acid sequence information were used to clone the subunit by polymerase chain reaction (PCR). Two overlapping PCR products comprised a complete open reading frame of 292 amino acids. The sequence contains all features of a protein kinase, suggesting that the 33-kDa peptide represents the catalytic subunit of the kinase. The 33-kDa subunit shows high and approximately equal homology to human p34cdc2 and human cdk2, with about 58 and 59% amino acid identity, respectively. These results suggest that the brain kinase represents a new category of the cdc2 family, and that some members of the cdc2 kinase family may have major functions unrelated to cell cycle control.  相似文献   

17.
In neurons the phosphorylation of neurofilament (NF) proteins NF-M and NF-H is topographically regulated. Although kinases and NF subunits are synthesized in cell bodies, extensive phosphorylation of the KSP repeats in tail domains of NF-M and NF-H occurs primarily in axons. The nature of this regulation, however, is not understood. As obligate heteropolymers, NF assembly requires interactions between the core NF-L with NF-M or NF-H subunits, a process inhibited by NF head domain phosphorylation. Phosphorylation of head domains at protein kinase A (PKA)-specific sites seems to occur transiently in cell bodies after NF subunit synthesis. We have proposed that transient phosphorylation of head domains prevents NF assembly in the soma and inhibits tail domain phosphorylation; i.e. assembly and KSP phosphorylation in axons depends on prior dephosphorylation of head domain sites. Deregulation of this process leads to pathological accumulations of phosphorylated NFs in the soma as seen in some neurodegenerative disorders. To test this hypothesis, we studied the effect of PKA phosphorylation of the NF-M head domain on phosphorylation of tail domain KSP sites. In rat cortical neurons we showed that head domain phosphorylation of endogenous NF-M by forskolin-activated PKA inhibits NF-M tail domain phosphorylation. To demonstrate the site specificity of PKA phosphorylation and its effect on tail domain phosphorylation, we transfected NIH3T3 cells with NF-M mutated at PKA-specific head domain serine residues. Epidermal growth factor stimulation of cells with mutant NF-M in the presence of forskolin exhibited no inhibition of NF-tail domain phosphorylation compared with the wild type NF-M-transfected cells. This is consistent with our hypothesis that transient phosphorylation of NF-M head domains inhibits tail domain phosphorylation and suggests this as one of several mechanisms underlying topographic regulation.  相似文献   

18.
Abstract: In this report, the phosphorylation sites of neurofilament protein of medium molecular mass (NF-M) by protein kinase FA/glycogen synthase kinase 3α (kinase FA/GSK-3α) were determined by two-dimensional electrophoresis/TLC, phosphoamino acid analysis, HPLC, Edman degradation, and peptide sequencing. Kinase FA/GSK-3α phosphorylates NF-M predominantly on serine, residue. Three major tryptic phosphopeptide peaks were resolved by C18 reverse-phase HPLC. Edman degradation and peptide sequence analysis revealed that AKS(p)PVSK is the phosphorylation site sequence for the first major peak. When mapping with the amino acid sequence of neurofilament, we finally demonstrate Ser603-Pro, one of the in vivo sites in NF-M, as the major site phosphorylated by kinase FA/GSK-3α. By using the same approach, we also identified the in vivo sites of Ser502-Pro, Ser506-Pro, and Ser666-Pro as the other three major sites in NF-M phosphorylated by kinase FA/GSK-3α. Taken together, the results provide initial evidence that kinase FA/GSK-3α may represent a physiologically relevant protein kinase involved in the in vivo phosphorylation of NF-M. Because Ser502, Ser506, Ser603, and Ser666 are all flanked by a carboxyl-terminal proline residue, the results provide further evidence that FA/GSK-3α may represent a proline-directed protein kinase involved in the structure-function regulation of the neuronal cytoskeletal system.  相似文献   

19.
Exposure of quiescent, serum-starved 3T3-L1 cells to insulin promotes phosphorylation of initiation factors eIF-4F, eIF-4B, and eIF-3 p120, as well as ribosomal protein S6. Phosphorylation of both the p25 and p220 subunits of eIF-4F is stimulated typically by 2.5-5-fold, with a 2-4-fold increase in phosphorylation of eIF-4B and eIF-3 p120. Optimal stimulation is observed by 10(-9) M insulin. A similar pattern of stimulation is seen upon treatment of 3T3-L1 cells with 1 x 10(-6) M phorbol 12-myristate 13-acetate (PMA). Two-dimensional phosphopeptide mapping of p25, isolated from quiescent, insulin- or PMA-stimulated cells, results in a single tryptic phosphopeptide, indicating a single phosphorylation site identical to that obtained with protein kinase C. A more complex phosphopeptide map is observed with the p220 subunit. Following PMA-stimulation of 3T3-L1 cells, phosphopeptide mapping of p220 results in a pattern similar to that observed in vitro with Ca2+/phospholipid-dependent protein kinase (protein kinase C). Following insulin stimulation, mapping of p220 results in the appearance of novel peptides. Upon prolonged exposure to PMA, the cells are no longer responsive to this mitogen and no stimulation of phosphorylation of eIF-4F, eIF-4b, eIF-3 p120, or S6 via a protein kinase C-dependent mechanism is observed. Addition of insulin to these down-regulated cells leads to stimulation of phosphorylation of eIF-4F p220, ribosomal protein S6, and to a lesser extent, eIF-4B; little or no stimulation of phosphorylation of eIF-4F p25 and eIF-3 p120 is observed. Thus, eIF-4F p220, eIF-4B and ribosomal protein S6 are phosphorylated via PMA-dependent and insulin-dependent pathways, whereas phosphorylation of eIF-4F p25 and eIF-3 p120 is stimulated only upon activation of protein kinase C. Phosphopeptide maps of eIF-4F p220 and ribosomal protein S6 suggest that protease-activated kinase II is one of the protein kinases involved in the insulin-stimulated response in protein kinase C-depleted cells.  相似文献   

20.
Threonyl-tRNA synthetase is phosphorylated in Chinese hamster ovary cells labeled with 32Pi [(1984) J. Biol. Chem. 259, 11160-11161]. Phosphorylation of the purified synthetase from rat liver has been examined with five different protein kinases. Three of the enzymes phosphorylate the synthetase, protease activated kinase I, the cAMP-dependent protein kinase, and the Ca2+, phospholipid-dependent protein kinase. Phosphorylation occurs exclusively on seryl residues. Two-dimensional phosphopeptide maps of tryptic digests of the phosphorylated synthetase are distinct with each protein kinase. These data suggest that multiple phosphorylation of the synthetase may occur in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号