首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
of whole cells of Methanobacterium thermoautotrophicum was estimated under varying conditions using an electrode sensitive to the lipophilic cation tetraphenylphosphonium chloride (TPP+). Since was found to be extremely sensitive to air, a special reaction vessel was developed to maintain strict anaerobiosis. The cells took up TPP+ under energization by H2 and CO2 thus allowing to calculate the from the distribution of TPP+ inside and outside the cells. The unspecific uptake of deenergized cells was around 10% of the total uptake of energized cells. TPP+ itself slightly diminished the , but had no effect on the formation of methane. Typical values of were in the range of-150 to-200 mV. showed a quantitative dependence on both the electron donor H2 and the electron acceptor CO2. NaCl stimulated the extent of the , whereas KCl slightly diminished it. Valinomycin resulted in a linear decline of , whereas the methane production rate was only slightly affected. In contrast, monensin reduced both methanogenesis and .Abbreviations pmf proton motive force - membrane potential - TPP+ tetraphenylphosphonium (chloride salt) - TPMP+ triphenylmethylphosphonium (chloride salt, if not otherwise indicated) - d.w. dry weight - t d doubling time - PVC polyvinylchloride  相似文献   

2.
Turgor (p) and osmotic potential (s) in epidermal and mesophyll cells, in-situ xylem water potential (-xyl) and gas exchange were measured during changes of air humidity and light in leaves ofTradescantia virginiana L., Turgor of single cells was determined using the pressure probe. Sap of individual cells was collected with the probe for measuring the freezing-point depression in a nanoliter osmometer. Turgor pressure was by 0.2 to 0.4 MPa larger in mesophyll cells than in epidermal cells. A water-potential gradient, which was dependent on the rate of transpiration, was found between epidermis and mesophyll and between tip and base of the test leaf. Step changes of humidity or light resulted in changes of epidermal and mesophyll turgor (p-epi, p-mes) and could be correlated with the transpiration rate. Osmotic potential was not affected by a step change of humidity or light. For the humidity-step experiments, stomatal conductance (g) increased with increasing epidermal turgor.g/p-epi appeared to be constant over a wide range of epidermal turgor pressures. In light-step experiments this type of response was not found and stomatal conductance could increase while epidermal turgor decreased.Symbols E transpiration - g leaf conductance - w leaf/air vapour concentration difference - -epi water potential of epidermal cells - -mes water potential of mesophyll cells - -xyl water potential of xylem - p-epi turgor pressure of epidermal cells - p-mes turgor pressure of mesophyll cells - s-epi osmotic potential of epidermal cells - s-mes osmotic potential of mesophyll cells  相似文献   

3.
Relative water content (RWC), leaf water potential (w) and osmotic potential (s), contents of chlorophyll (Chl) a, Chl b, soluble sugars, and seed quality (gum content) were used to evaluate the role of phosphorus in alleviation of the deleterious effect of water deficit in clusterbean (Cyamopsis tetragonoloba L. Taub). Under water stress, w, s, and Chl and gum contents decreased and soluble sugar contents increased. Phosphorus application increased Chl and sugar contents in control plants and ameliorated negative effects of water stress.  相似文献   

4.
M. E. Westgate  J. S. Boyer 《Planta》1985,164(4):540-549
The expansion growth of plant organs is inhibited at low water potentials ( w), but the inhibition has not been compared in different organs of the same plant. Therefore, we determined elongation rates of the roots, stems, leaves, and styles (silks) of maize (Zea mays L.) as soil water was depleted. The w was measured in the region of cell expansion of each organ. The complicating effects of transpiration were avoided by making measurements at the end of the dark period when the air had been saturated with water vapor for 10 h and transpiration was less than 1% of the rate in the light. Growth was inhibited as the w in the region of cell expansion decreased in each organ. The w required to stop growth was-0.50,-0.75, and-1.00 MPa, in this order, in the stem, silks, and leaves. However, the roots grew at these w and ceased only when w was lower than-1.4 MPa. The osmotic potential decreased in each region of cell expansion and, in leaves, roots and stems, the decrease was sufficient to maintain turgor fully. In the silks, the decrease was less and turgor fell. In the mature tissue, the w of the stem, leaves and roots was similar to that of the soil when adequate water was supplied. This indicated that an equilibrium existed between these tissues, the vascular system, and the soil. At the same time, the w was lower in the expanding regions than in the mature tissues, indicating that there was a w disequilibrium between the growing tissue and the vascular system. The disequilibrium was interpreted as a w gradient for supplying water to the enlarging cells. When water was withheld, this gradient disappeared in the leaf because w decreased more in the xylem than in the soil, indicating that a high flow resistance had developed in the xylem. In the roots, the gradient did not decrease because vascular w changed about the same amount as the soil w. Therefore, the gradient in w favored water uptake by roots but not leaves at low w. The data show that expansion growth responds to low w differently in different growing regions of the plant. Because growth depends on the maintenance of turgor for extending the cell walls and the presence of w gradients for supplying water to the expanding cells, several factors could have been responsible for these differences. The decrease of turgor in the silks and the loss of the w gradient in the leaves probably contributed to the high sensitivity of these organs. In the leaves, the gradient loss was so complete that it would have prevented growth regardless of other changes. In the roots, the maintenance of turgor and w gradients probably allowed growth to continue. This difference in turgor and gradient maintenance could contribute to the increase in root/shoot ratios generally observed in water-limited conditions.Symbols s osmotic potential - w water potential  相似文献   

5.
Effects of water-stress treatment of Zea mays L. plants on protoplast volume and photosynthesis in leaf slices exposed to solutions of different osmotic potential ( s) were studied. Decreased photosynthetic capacity in the leaf slices at low tissue w was associated with dehydration-induced protoplast-volume reduction. Leaf slices from plants exposed to in-situ water deficits exhibited greater photosynthetic capacity and relative protoplast volume at low water potential ( w) invitro than tissue from control plants.In-situ water stress induced osmotic adjustment of the leaf tissue as determined by pressure/volume analysis. It is concluded that plant acclimation to low leaf w may involve a reduced degree of cell shrinkage at a given w. This acclimation would allow for the maintenance of relatively higher photosynthetic capacity at low water protentials.Symbols s Osmotic potential - w water potential New Jersey Agricultural Experiment Station Publication No. 12149-6-87  相似文献   

6.
Summary The degree of winter desiccation resistance exhibited by Larix lyallii Parl. was assessed by determination of water potential components and content of buds, xylem pressure potential ( xylem) of twigs and amount of damage through winter at timberline in the Rocky Mountains of Canada. Comparative measurements were made on sympatric evergreen tree species to evaluate differences in winter desiccation avoidance and tolerance between evergreen and deciduous trees. Total () and osmotic plus matric potentials ( + ) of L. lyallii buds were lowest in December (-5.0 to-5.3 MPa and-6.6 to-7.0 MPa, respectively) when temperatures were lowest. Bud and water content increased in late winter while xylem of twigs continued to decline until March. The buds were isolated from the xylem from October through February, as indicated by large differences in water potential between the two organs during this time. Buds thus avoided desiccation as water was lost from the twigs. At the same time the buds were tolerant of very low and + , a characteristic which is an important component of freezing damage resistance. Desiccation damage to buds of L. lyallii was much less than that to buds of similar-sized nearby trees of Abies lasiocarpa, although xylem of both species was similar. The deciduous habit apparently confers a significant advantate to L. lyallii, which dominated the upper timberline sites, in reduced susceptibility to winter desiccation damage. Other deciduous timberline species might also benefit from this advantage where winter conditions are desiccating.Seedlings of L. lyallii were also studded for their winter desiccation resistance because they have a large component of non-deciduous (wintergreen) needles that are photosynthetically active through two growing seasons and must overwinter as mature tissue. Experimental exposure of these needles, which are normally protected by the snowpack, caused nearly complete mortality of the wintergreen needles when twig xylem was only-3.9 MPa. The buds on these twigs were undamaged.  相似文献   

7.
Ranjbarfordoei  A.  Samson  R.  Lemeur  R.  Van Damme  P. 《Photosynthetica》2002,40(2):165-169
Leaf water potential, leaf osmotic potential, chlorophyll a and b contents, stomatal conductance, net photosynthetic rate, and water use efficiency were determined in two pistachio species (Pistacia khinjuk L. and P. mutica L.) grown under osmotic drought stress induced by a combination of NaCl and polyethylene glycol 6000. A decrease in values for all mentioned variables was observed as the osmotic potential of the nutrient solution (s) decreased. The osmotic adjustment () of the species increased by decreasing s. Thus P. khinjuk had a higher osmotic drought stress tolerance than P. mutica.  相似文献   

8.
It is often difficult to identify sexes of many fish species by conventional cytological method because of the lack of heteromorphic sex chromosomes. Isolation of sex-specific molecular markers is thus important for sexing and for understanding sex chromosome evolution in these species. We have identified genetic sexes by PCR-based male-specificity of a growth hormone pseudogene (GH-) in masu and Biwa salmon, two subspecies of the Oncorhynchus masou complex, and their hybrid Honmasu. PCRs with primers designed from sequences of chinook salmon GH genes amplified GH-I and GH-II fragments in both sexes, but a third GH- fragment was detected in predominant proportion of males and very few phenotypic females. The consistency of phenotypic sex with genetic sex identified by GH- for masu salmon, Biwa salmon and Honmasu was 93.1, 96.7 and 94%, respectively. The remaining individuals showed inconsistency or deviation from sex-specificity: a few phenotypic males lacked the GH-, whereas a few phenotypic females possessed the GH-. Sequence of the putative GH- fragment from such females was identical to that from genetic males, and shared about 95% homology with the corresponding GH- fragment from chinook salmon. This result confirmed that these females were really GH--bearing individuals. PCR analyses with primers designed from masu salmon GH- gave identical results, indicating that the absence of GH- in a few males was not resulted from primer mismatching. These GH--bearing females and GH--absent males were more likely to originate from spontaneous sex reversion than from crossing-over between GH- and the sex determination gene/region.  相似文献   

9.
Summary The short term effects of irrigation on diurnal changes in leaf and titratable acidity were examined both inSempervivum montanum and inSedum album, a facultative CAM plant, in the Spanish Pyrenees. InSemperivivum, leaf responded rapidly to irrigation and, in both the control and irrigated plants, increased during the day and decreased during the night and early morning. By contrast, leaf inSedum responded more slowly to irrigation and showed a decrease during the day and an increase in the period between evening and early morning. Under the conditions of the short-term experiments, changes in acid metabolism were not observed in either species following irrigation. The results suggest that transpirational water loss together with redistribution of water within the plant are more important than the osmotic concentration of malic acid in determining leaf in both species and that daytime water loss is greater inSedum than inSempervivum.The effect of long-term water stress on leaf and acid levels was also assessed in both species over a 3-week period. Both leaf and acidification inSempervivum decreased over this time period but could, at least partially, be reversed by irrigation. InSedum, leaf also declined but a more gradual reduction in acidification occurred than inSempervivum. Irrigation inSedum at least partially reversed the decline in leaf but produced a complex pattern of acid metabolism. Nocturnal acidification in the irrigated plants was lower than in the non-irrigated control when preceded by a cool day but showed complete recovery following a hot day. It is suggested inSedum album that C3 photosynthesis during the preceding light period, as determined by light intensity and leaf temperature, may be important in determining the extent of nocturnal acidification under field conditions.  相似文献   

10.
Summary Solute osmotic potentials (x) in the vessels of hydroponically grown maize roots were measured to assess the osmotic-xylem-sap mechanism for generating root pressure (indicated by guttation). Solutes in vessels were measured in situ by X-ray microanalysis of plants frozen intact while guttating. Osmotic potentials outside the roots (o) were changed by adding polyethylene glycol to the nutrient solution. Guttation rate fell when o was decreased, but recovered towards the control value during 3–5 days when o was greater than or equal to –0.3 MPa, but not when o was equal to –0.4 MPa. In roots stressed to o = –0.3 MPa, x, was always more positive than o, and x changed only slightly (ca. 0.05 MPa). Thus the adjustment in the roots which increased root pressure cannot be ascribed to x, contradicting the osmotic-xylem-sap mechanism. An alternative driving force was sought in the osmotic potentials of the vacuoles of the living cells (v), which were analysed by microanalysis and estimated by plasmolysis. v showed larger responses to osmotic stress (0.1 MPa). Some plants were pretreated with abundant KNO3 in the nutrient solution. These plants showed very large adjustments in v (0.4 MPa) but little change in x (0.08 MPa). They guttated by 4 h after o was lowered to –0.4 MPa. It is argued that turgor pressure of the living cells is a likely alternative source of root pressure. Published evidence for high solute concentrations in the xylem sap is critically assessed.Abbreviations o external water potential - x osmotic potential of xylem sap - v osmotic potential of vacuolar sap - EDX energy dispersive X-ray microanalysis - CSEM cryo-scanning electron microscope - LN2 liquid nitrogen - PEG polyethylene glycol  相似文献   

11.
Summary Lupins (Lupinus angustifolius and L. cosentinii) growing in 321 containers in a glasshouse were exposed to drought by withholding water. Leaf water potential (1), and leaf osmotic potential (s) were measured daily as soil water became depleted. Leaf water relations were further assessed by a pressure-volume technique and by measuring s and relative water content of leaves after rehydration. Analysis by pressure-volume or cryoscopic techniques showed that leaf osmotic potential at saturation (s100) decreased from -0.6 MPa in well watered to -0.9 MPa in severely droughted leaves, and leaf water potential at zero turgor (zt) decreased from about -0.7 to -1.1 MPa in well watered and droughted plants, respectively. Relative water content at zero turgor (RWCzt) was high (88%) and tended to be decreased by drought. The ratio of turgid leaf weight to dry weight was not influenced by drought and was high at about 8.0. The bulk elastic modulus () was approximately halved by drought when related to leaf turgor potential (p) and probably mediated turgor maintenance during drought. The latter was found to be negatively influenced by rate of drought. Supplying the plants with high levels of K salts did not promote adjustment or turgor maintenance.  相似文献   

12.
N. Terry  L. J. Waldron  A. Ulrich 《Planta》1971,97(4):281-289
Summary Sugar beets were subjected to moisture stress by decreasing the water potential of the culture solution osmotically with polyethylene glycol by a known amount, , and, alternatively by applying matric potential, , at the plant roots. Lowering the water potential at the root surface less than 200 millibars by either method resulted in significant decreases in the rate of cell multiplication. The final number of cells per leaf at = -372 mb the final was 165% of that at = -473 mb ( = –101 mb); similarly at = –15 mb the final cell number was 198% of that at = –196 mb ( = –181 mb). The mean cell volume of leaves was not significantly affected by these levels of moisture stress.  相似文献   

13.
The influence of plant water relations on phloem loading was studied in Ricinus communis L. Phloem transport was maintained in response to bark incisions even at severe water deficits. Water stress was associated with a net increase in the solute content of the sieve tubes, which resulted in maintenance of a positive phloem turgor pressure p. There was a significant increase in solute flux through the phloem with decreasing xylem water potential (). In addition, sugar uptake by leaf discs was examined in media adjusted to different water potentials with either sorbitol (a relatively impermeant solute) or ethylene glycol (a relatively permeant solute). The limitations in this experimental system are discussed. The results nevertheless indicated that sucrose uptake can be stimulated by a reduction in cell p, but that it is little affected by cell or solute potential s. On the basis of these data we suggest that sucrose loading is turgor-pressure dependent. This may provide the mechanism by which transport responds to changes in sink demand in the whole plant.Abbreviations water potential - s solute potential - p pressure potential  相似文献   

14.
Summary Bud break, shoot growth and flowering of trees involve cell expansion, known to be inhibited by moderate water deficits. In apparent contradiction to physiological theory, many trees flower or exchange leaves during the 6 month-long, severe dry season in the tropical dry forest of Guanacaste, Costa Rica. To explore this paradox, changes in tree water status during the dry season were monitored in numerous trees. Water potential of stem tissues (stem) was obtained by a modification of the pressure chamber technique, in which xylem tension was released by cutting defoliated branch samples at both ends. During the early dry season twigs bearing old, senescent leaves generally had a low leaf water potential (leaf), while stem varied with water availability. At dry sites, stem was very low in hardwood trees (<–4 MPa), but near saturation (>–0.2 MPa) in lightwood trees storing water with osmotic potentials between –0.8 and –2.1 MPa. At moist sites trees bearing old leaves rehydrated during drought; their stem increased from low values (<–3 MPa) to near saturation, resulting in differences of 3–4 MPa between stem and leaf. Indirect evidence indicates that rehydration resulted from osmotic adjustment of stem tissues and improved water availability due to extension of roots into moist subsoil layers. In confirmation of physiological theory, elimination of xylem tension by leaf shedding and establishment of a high solute content and high stem were prerequisites for flowering and bud break during drought.  相似文献   

15.
D. W. West  D. F. Gaff 《Planta》1976,129(1):15-18
Summary A change occurs in the relationship between xylem water potential (x) measured with the pressure chamber and leaf water potential ((w)) when a period of post-excision water loss is allowed before measurement of (x) and (x). When this occurs, water stress is over-estimated by the pressure chamber measurement. Over the same period of water loss, cavitation vibrations have been detected acoustically in excised leaves. It is suggested that the measurement of (x) is affected by emptying of some of the xylem vessels due to cavitation. This would require that additional pressure be applied to a leaf in the pressure chamber in order to measure (x).  相似文献   

16.
Clostridium sporogenes MD1 grew rapidly with peptides and amino acids as an energy source at pH 6.7. However, the proton motive force (p) was only –25 mV, and protonophores did not inhibit growth. When extracellular pH was decreased with HCl, the chemical gradient of protons (ZpH) and the electrical membrane potential () increased. The p was –125 mV at pH 4.7, even though growth was not observed. At pH 6.7, glucose addition did not cause an increase in growth rate, but increased to –70 mV. Protein synthesis inhibitors also significantly increased . Non-growing, arginine-energized cells had a of –80 mV at pH 6.7 or pH 4.7, but was not detected if the F1F0 ATPase was inhibited. Arginine-energized cells initiated growth if other amino acids were added at pH 6.7, and and ATP declined. At pH 4.7, ATP production remained high. However, growth could not be initiated, and neither nor the intracellular ATP concentration declined. Based on these results, it appears that C. sporogenes MD1 does not need a large p to grow, and p appears to serve as a mechanism of ATP dissipation or energy spilling.Mandatory disclaimer: Proprietary or brand names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product, and exclusion of others that may be suitable.  相似文献   

17.
A new guillotine thermocouple psychrometer was used to make continuous measurements of water potential before and after the excision of elongating and mature regions of darkgrown soybean (Glycine max L. Merr.) stems. Transpiration could not occur, but growth took place during the measurement if the tissue was intact. Tests showed that the instrument measured the average water potential of the sampled tissue and responded rapidly to changes in water potential. By measuring tissue osmotic potential ( s ), turgor pressure ( p ) could be calculated. In the intact plant, s and p were essentially constant for the entire 22 h measurement, but s was lower and p higher in the elongating region than in the mature region. This caused the water potential in the elongating region to be lower than in the mature region. The mature tissue equilibrated with the water potential of the xylem. Therefore, the difference in water potential between mature and elongating tissue represented a difference between the xylem and the elongating region, reflecting a water potential gradient from the xylem to the epidermis that was involved in supplying water for elongation. When mature tissue was excised with the guillotine, s and p did not change. However, when elongating tissue was excised, water was absorbed from the xylem, whose water potential decreased. This collapsed the gradient and prevented further water uptake. Tissue p then decreased rapidly (5 min) by about 0.1 MPa in the elongating tissue. The p decreased because the cell walls relaxed as extension, caused by p , continued briefly without water uptake. The p decreased until the minimum for wall extension (Y) was reached, whereupon elongation ceased. This was followed by a slow further decrease in Y but no additional elongation. In elongating tissue excised with mature tissue attached, there was almost no effect on water potential or p for several hours. Nevertheless, growth was reduced immediately and continued at a decreasing rate. In this case, the mature tissue supplied water to the elongating tissue and the cell walls did not relax. Based on these measurements, a theory is presented for simultaneously evaluating the effects of water supply and water demand associated with growth. Because wall relaxation measured with the psychrometer provided a new method for determining Y and wall extensibility, all the factors required by the theory could be evaluated for the first time in a single sample. The analysis showed that water uptake and wall extension co-limited elongation in soybean stems under our conditions. This co-limitation explains why elongation responded immediately to a decrease in the water potential of the xylem and why excision with attached mature tissue caused an immediate decrease in growth rate without an immediate change in p Abbreviations and symbols L tissue conductance for water - m wall extensibility - Y average yield threshold (MPa) - o water potential of the xylem - p turgor pressure - s osmotic potential - w water potential of the elon gating tissue  相似文献   

18.
The maximal growth rate of the marine cyanobacterium Oscillatoria brevis was reached at 200–400 mM NaCl and pH 9.0–9.6. NaCl was found (i) to stimulate the rate of the light-supported generation across the cytoplasmic membrane of the cells and (ii) to decrease the sensitivity of level and motility of the O. brevis trichomes to protonophorous uncouplers. The Na+/H+ antiporter, monensin, increased both and the uncoupler sensitivity of the cells. The data obtained agree with the assumption that O. brevis possesses a primary Na+ pump in its cytoplasmic membrane.Abbreviations ATP adenosine-5-triphosphate - TTFB tetrachlortrifluoromethylimidazol - CCCP carbonyl cyanide m-chlorophenylhydrazone - Na+ transmembrane electrochemical potential differences of Na+ - transmembrane electric potential difference - pNa transmembrane pNa difference  相似文献   

19.
Seasonal regulation of leaf water potential (L) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum L were small in all of the study species. Water use and water status were regulated by a combination of plant physiological and architectural traits. Despite a nearly 3-fold increase in mean D between the wet and dry season, a sharp decline in stomatal conductance with increasing D constrained seasonal variation in minimum L by limiting transpiration per unit leaf area (E). The leaf surface area per unit of sapwood area (LA/SA), a plant architectural index of potential constraints on water supply in relation to transpirational demand, was about 1.5–8 times greater in the wet season compared to the dry season for most of the species. The changes in LA/SA from the wet to the dry season resulted from a reduction in total leaf surface area per plant, which maintained or increased total leaf-specific hydraulic conductance (Gt) during the dry season. The isohydric behavior of Cerrado tree species with respect to minimum L throughout the year thus was the result of strong stomatal control of evaporative losses, a decrease in total leaf surface area per tree during the dry season, an increase in total leaf-specific hydraulic conductance, and a tight coordination between gas and liquid phase conductance. In contrast with the seasonal isohydric behavior of minimum L, predawn L in all species was substantially lower during the dry season compared to the wet season. During the dry season, predawn L was more negative than bulk soil estimated by extrapolating plots of E versus L to E=0. Predawn disequilibrium between plant and soil was attributable largely to nocturnal transpiration, which ranged from 15 to 22% of the daily total. High nocturnal water loss may also have prevented internal water storage compartments from being completely refilled at night before the onset of transpiration early in the day.  相似文献   

20.
The objective of this study was to determine how adjustment in stomatal conductance (g s) and turgor loss point (tlp) between riparian (wet) and neighboring slope (dry) populations of Acer grandidentum Nutt. was associated with the susceptibility of root versus stem xylem to embolism. Over two summers of study (1993–1994), the slope site had substantially lower xylem pressures (px) and g s than the riparian site, particularly during the drought year of 1994. The tlp was also lower at the slope (-2.9±0.1 MPa; all errors 95% confidence limits) than at riparian sites (-1.9±0.2 MPa); but it did not drop in response to the 1994 drought. Stem xylem did not differ in vulnerability to embolism between sites. Although slope-site stems lost a greater percentage of hydraulic conductance to embolism than riparian stems during the 1994 drought (46±11% versus 27±3%), they still maintained a safety margin of at least 1.7 MPa between midday px and the critical pressure triggering catastrophic xylem embolism (pxCT). Root xylem was more susceptible to embolism than stem xylem, and there were significant differences between sites: riparian roots were completely cavitated at -1.75 MPa, compared with -2.75 MPa for slope roots. Vulnerability to embolism was related to pore sizes in intervessel pit membranes and bore no simple relationship to vessel diameter. Safety margins from pxCT averaged less than 0.6 MPa in roots at both the riparian and slope sites. Minimal safety margins at the slope site during the drought of 1994 may have led to the almost complete closure of stomata (g s=9±2 versus 79±15 mmol m-2 s-1 at riparian site) and made any further osmotic adjustment of tlp non-adaptive. Embolism in roots was at least partially reversed after fall rains. Although catastrophic embolism in roots may limit the minimum for gas exchange, partial (and reversible) root embolism may be adaptive in limiting water use as soil water is exhausted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号