首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Embryonic muscle cells of the frog Xenopus laevis were isolated and grown in culture and single-channel recordings of potassium inward rectifier and acetylcholine (ACh) receptor currents were obtained from cell-attached membrane patches. Two classes of inward rectifier channels, which differed in conductance, were apparent. With 140 mM potassium chloride in the electrode, one channel class had a conductance of 28.8 ± 3.4 pS (n = 21), and, much more infrequently, a smaller channel class with a conductance of 8.6 ± 3.6 pS (n = 7) was recorded. Both channel classes had relatively long mean channel open times, which decreased with membrane hyperpolarization. The probability of finding a patch of membrane with an inward rectifier channel was high (66%) and many membrane patches contained more than one inward rectifier channel. The open state probability (with no applied potential) was high for both inward rectifier channel classes so that 70% of the time there was a channel open. Seventy-three percent of the membrane patches with ACh receptor channels (n = 11) also had at least one inward rectifier channel present when the patch electrode contained 0.1 μM ACh. Inward rectifier channels were also found at 71% of the sites of high ACh receptor density (n = 14), which were identified with rhodamine-conjugated α-bungarotoxin. The results indicate that the density of inward rectifier channels in this embryonic skeletal muscle membrane was relatively high and includes sites of membrane that have synaptic specializations. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
We studied the potassium channel in the basolateral membrane of the rat proximal convoluted tubule as affected by cyclosporine A. Proximal convoluted tubules were dissected from the rat kidney under a stereoscopic microscope, without a preliminary enzyme treatment. The standard configuration for single-channel tight seal patch-clamp technique was used to record channel currents. A small conductance, stretch-sensitive potassium channel could be observed spontaneously in most of the cell-attached patches as the gigaohm seal was formed. In the inside-out configuration, channel activity was diminished. The K(+) channel appeared to be an inward rectifier. The limiting inward slope conductance was 28.3+/-1.7 pS (Vp was between 40 mV and 80 mV, n=6) and the outward chord conductance was 5.6+/-0.3 pS (Vp was between -40 and -60 mV, n=5). The open dwell time constants of the potassium channel were 0.524 ms and 5.087 ms, while the closed dwell time constants were 1.029 ms and 16.500 ms. The opening probability of the channel decreased when the extracellular fluid was acidified. Cyclosporine A had no significant effect on the potassium channel of the proximal tubular cell in the basolateral membrane at concentrations of 10 and 50 microg/ml, while at 100 microg/ml, it decreased the opening probability.  相似文献   

3.
1. Conventional microelectrode techniques were used to measure simultaneous changes in membrane potential (Vm) and conductance (Gm) induced by single electrical stimuli in muscles bathed in Cl(-)-free solution containing 40 mM of tetraethylammonium (TEA+). 2. Stimulation induced slow transient depolarizations (slow response) accompanied by increased calcium conductance, while the potassium conductance was first elevated and later reduced. 3. Stepwise elevation of [K+]0 from 2.5 to 5 or 10 mM during the slow response evoked an abrupt repolarization of 42.3 +/- 8.9 mV (n = 4; p less than 0.001), and 24.8 +/- 3.5 +/- mV (n = 5; p less than 0.001), respectively, while Gm was increased to 1.45 +/- 0.25-fold (n = 5; p less than 0.05). Neither the slow response nor K(+)-induced changes in Vm or Gm were sensitive to tetrodotoxin (3 microM), however, nifedipine (10 microM) abolised the slow response. 4. It was concluded that beyond the increase of calcium conductance, the ionic conductance of the inward rectifier K+ channel was reduced during the slow response, which could be restored by the elevation of [K+]0. The results suggest the possible contribution of these mechanisms to the electrical instability of myotonic muscles. Potential therapeutic consequences are discussed.  相似文献   

4.
Single channel currents were recorded from cell-attached patches of endocrine cells of the adult male cricket corpora allata. Three distinct types of K+ channels were identified; a weak inward rectifier (Type 1), a strong inward rectifier (Type 2) and a weak outward rectifier (Type 3). The type 1 channel had a slope conductance of 191 +/- 9 pS (n = 4) at negative membrane potentials (Vm) and 101 +/- 6 pS (n = 6) at positive Vm. In addition, the channel showed fast open-closed kinetics at negative Vm and slow open-closed kinetics at positive Vm. The open probability (Po) of this channel was strongly voltage-dependent at positive Vm, but less voltage-dependent at negative Vm. The reversal potential was not modified significantly by the substitution of gluconate for external Cl- but was modified after N-methyl-D-glucamine (NMDG+) was substituted for external K+, according to the Nernst equation for a K+-selective channel. The type 2 channel had a slope conductance of 44 +/- 2 pS (n = 5) at negative Vm, but no detectable outward current was observed at positive Vm. This channel showed very slow open-closed kinetics at negative Vm and its Po was not voltage-dependent. The type 3 channel had a limit conductance of 55 +/- 12 pS (n = 3) at negative Vm and 88 +/- 10 pS (n = 3) at positive Vm. This channel showed slow open-closed kinetics at negative Vm and fast open-closed kinetics at positive Vm. The Po for the channel was voltage-dependent at positive Vm but was voltage-independent at negative Vm. These three types of K+ channels may be important for the control of the resting membrane potential, and may thus participate in the regulation of Ca2+ influx and juvenile hormone secretion in corpora allata cells.  相似文献   

5.
The antibiotic gramicidin A (1.10(-6) M) increases the K+ conductance of normal and detubulated frog skeletal muscle fibres in isotonic K2SO4 solution to a steady-state level, which is reached in 6--9 min, and corresponds to 8058 +/- 1669 and 5767 +/- 902 Om-1. 10(-6)/cm2, resp. There is no correlation between the initial K+ conductance and the value of the steady state of gramicidin A-induced conductance (r = 0.24). According to the dimer hypothesis, the dissociation rate constant of the garmicidin channels was found to be 0.006 +/- 0.0001 sec-1. This result supports the suggestion of a higher stability of gramicidin channels in muscle compared to the bimolecular lipid membranes.  相似文献   

6.
Pharmacological and kinetic properties of the inward rectifier potassium current Iir the frog embryonic skeletal myocytes were found to be identical to those of adult frog skeletal muscle fibres. The data obtained suggest that the Iir plays the main role in maintaining the myocytes resting membrane potential (RMP) when chloride conductance is insignificant. Changes of the integral conductance Gir and the RMP values correlated with the T-system development. The inward rectifier K+ channels, from the early stages of the muscle seem to be located in the T-tubule membranes.  相似文献   

7.
8.
During prolonged activity the action potentials of skeletal muscle fibres change their shape. A model study was made as to whether potassium accumulation and removal in the tubular space is important with respect to those variations. Classical Hodgkin-Huxley type sodium and (potassium) delayed rectifier currents were used to determine the sarcolemmal and tubular action potentials. The resting membrane potential was described with a chloride conductance, a potassium conductance (inward rather than outward rectifier) and a sodium conductance (minor influence) in both sarcolemmal and tubular membranes. The two potassium conductances, the Na-K pump and the potassium diffusion between tubular compartments and to the external medium contributed to the settlement of the potassium concentration in the tubular space. This space was divided into 20 coupled concentric compartments. In the longitudinal direction the fibre was a cable series of 56 short segments. All the results are concerned with one of the middle segments. During action potentials, potassium accumulates in the tubular space by outward current through both the delayed and inward rectifier potassium conductances. In between the action potentials the potassium concentration decreases in all compartments owing to potassium removal processes. In the outer tubular compartment the diffusion-driven potassium export to the bathing solution is the main process. In the inner tubular compartment, potassium removal is mainly effected by re-uptake into the sarcoplasm by means of the inward rectifier and the Na-K pump. This inward transport of potassium strongly reduces the positive shift of the tubular resting membrane potential and the consequent decrease of the action potential amplitude caused by inactivation of the sodium channels. Therefore, both potassium removal processes maintain excitability of the tubular membrane in the centre of the fibre, promote excitation-contraction coupling and contribute to the prevention of fatigue. Received: 5 May 1998 / Revised version: 27 October 1998 / Accepted: 19 January 1999  相似文献   

9.
Inward-rectifier K channel: using macroscopic voltage clamp and single- channel patch clamp techniques we have identified the K+ channel responsible for potassium recycling across basolateral membranes (BLM) of principal cells in intact epithelia isolated from frog skin. The spontaneously active K+ channel is an inward rectifier (Kir) and is the major component of macroscopic conductance of intact cells. The current- voltage relationship of BLM in intact cells of isolated epithelia, mounted in miniature Ussing chambers (bathed on apical and basolateral sides in normal amphibian Ringer solution), showed pronounced inward rectification which was K(+)-dependent and inhibited by Ba2+, H+, and quinidine. A 15-pS Kir channel was the only type of K(+)-selective channel found in BLM in cell-attached membrane patches bathed in physiological solutions. Although the channel behaves as an inward rectifier, it conducts outward current (K+ exit from the cell) with a very high open probability (Po = 0.74-1.0) at membrane potentials less negative than the Nernst potential for K+. The Kir channel was transformed to a pure inward rectifier (no outward current) in cell- attached membranes when the patch pipette contained 120 mM KCl Ringer solution (normal NaCl Ringer in bath). Inward rectification is caused by Mg2+ block of outward current and the single-channel current-voltage relation was linear when Mg2+ was removed from the cytosolic side. Whole-cell current-voltage relations of isolated principal cells were also inwardly rectified. Power density spectra of ensemble current noise could be fit by a single Lorentzian function, which displayed a K dependence indicative of spontaneously fluctuating Kir channels. Conclusions: under physiological ionic gradients, a 15-pS inward- rectifier K+ channel generates the resting BLM conductance in principal cells and recycles potassium in parallel with the Na+/K+ ATPase pump.  相似文献   

10.
N E Shvinka  G Caffier 《Tsitologiia》1988,30(9):1101-1107
Conductance ratios (Gi/Gk) and permeability ratios (Pi/Pk) for monovalent cations in frog muscle fibres have been defined under constant current conditions using a double sucrose gap method. Selectivity determined from potassium channel conductance is: K+ greater than Rb+ greater than Cs+ greater than greater than NH4+ greater than Na+ greater than Li+. In gramicidin channels both the permeability and conductance sequences are identical: NH4+ greater than Cs+ greater than Rb+ greater than K+ greater than Na+ greater than Li+. In isotonic K+-sulfate solution with one-sided addition of external [Tl+] (2.5 x 10(-3)-20 x 10(-3) M), differences in the conductance and permeability ratios for gramicidin channel were observed.  相似文献   

11.
12.
The membrane potential in mouse skeletal muscle depends on both extracellular osmolality and potassium concentration. These dependencies have been related to two membrane transporters, Na+/K+/2Cl- co-transporter and the inward potassium rectifier channel. To investigate the relation of the Na+/K+/2Cl- co-transporter and the inward potassium rectifier channel in a qualitative way, a combined electrophysiological and modelling approach was used. The experimental results show that the bistability of the membrane potential, which is related to the conductive state of the inward potassium rectifier channel, is shifted to higher extracellular potassium values when medium osmolality is increased. These results are confirmed by the computer simulation calculations for increased co-transporter flux. The combined results indicate that the co-transporter is capable of modulating the conductive state of the inward potassium rectifier channel.  相似文献   

13.
He Y  Pan Q  Li J  Chen H  Zhou Q  Hong K  Brugada R  Perez GJ  Brugada P  Chen YH 《FEBS letters》2008,582(15):2338-2342
Inward rectifier potassium Kir2.x channels mediate cardiac inward rectifier potassium currents (I(K1)). As a subunit of Kir2.x, the physiological role of Kir2.3 in native cardiomyocytes has not been reported. This study shows that Kir2.3 knock-down remarkably down-regulates Kir2.3 expression (Kir2.3 protein was reduced to 19.91+/-3.24% on the 2nd or 3rd day) and I(K1) current densities (at -120 mV, control vs. knock-down: -5.03+/-0.24 pA/pF, n=5 vs. -1.16+/-0.19 pA/pF, n=7, P<0.001) in neonatal rat cardiomyocytes. The data suggest that Kir2.3 plays a potentially important role in I(K1) currents in neonatal rat cardiomyocytes.  相似文献   

14.
C-type natriuretic peptides (CNP) play an inhibitory role in smooth muscle motility of the gastrointestinal tract, but the effect of CNP on delayed rectifier potassium currents is still unclear. This study was designed to investigate the effect of CNP on delayed rectifier potassium currents and its mechanism by using conventional whole-cell patch-clamp technique in guinea-pig gastric myocytes isolated by collagenase. CNP significantly inhibited delayed rectifier potassium currents [I(K (V))] in dose-dependent manner, and CNP inhibited the peak current elicited by depolarized step pulse to 86.1+/-1.6 % (n=7, P<0.05), 78.4+/-2.6 % (n=10, P<0.01) and 67.7+/-2.3 % (n=14, P<0.01), at concentrations of 0.01 micromol/l, 0.1 micromol/l and 1 micromol/l, respectively, at +60 mV. When the cells were preincubated with 0.1 micromol/l LY83583, a guanylate cyclase inhibitor, the 1 ?micromol/l CNP-induced inhibition of I(K (V)) was significantly impaired but when the cells were preincubated with 0.1 micromol/l zaprinast, a cGMP-sensitive phosphodiesterase inhibitor, the 0.01 micromol/l CNP-induced inhibition of I(K (V)) was significantly potentiated. 8-Br-cGMP, a membrane permeable cGMP analogue mimicked inhibitory effect of CNP on I(K (V)). CNP-induced inhibition of I(K (V)) was completely blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). The results suggest that CNP inhibits the delayed rectifier potassium currents via cGMP-PKG signal pathway in the gastric antral circular myocytes of the guinea-pig.  相似文献   

15.
Wang JK  Cui CC  Zhang H  Yao QH  Yao XW  Chen XY 《生理学报》2004,56(4):487-492
研究长期使用肾上腺素能受体阻断剂治疗对慢性压力超负荷左心室电重构的影响。新西兰兔通过肾上腹主动脉次全结扎诱发慢性压力超负荷,10周后行心脏超声检查,并采用全细胞膜片钳技术分别记录腹主动脉结扎组(简称结扎组)、腹主动脉结扎 Carvedilol 干预组(简称Carvedilol组)及正常对照组(简称对照组)动物左室肌中层细胞的动作电位(action potential,AP)、内向整流钾电流(inward rectifier potassium current,IKi)、延迟整流钾电流(delayed rectifier potassium current,IK)及Na /Ca2 交换体电流。结果表明,结扎组的左室质量指数较对照组明显升高,Carvedilol组较结扎组明显降低(P<0.01)。在2 s的基础周长下,动作电位持续时间(以90%的复极时间表示,简称APD90)在对照组、结扎组及Carvedilol组分别为522.0±19.5 ms(n=6)、664.7± 46.2 ms(n=7)、567.8±14.3 ms(n=8),结扎组同对照组相比,P<0.01,Carvedilol组同结扎组相比,P<0.05。在测试电位为-100mV时,IKi电流密度(pA/pF)在对照组、结扎组及Carvedilol组分别为-11.8±0.50(n=8),-8.07±0.28 (n=8),-10.69±0.35(n=8),结扎组与对照组及Carvedilol组相比,P<0.01。在测试电位为 50 mV时,IK尾电流密度(pA/pF)在对照组、结扎组及Carvedilol组分别为0.59±0.40(n=  相似文献   

16.
The effect of external potassium (K) and cesium (Cs) on the inwardly rectifying K channel ROMK2 (K(ir)1.1b) was studied in Xenopus oocytes. Elevating external K from 1 to 10 mM increased whole-cell outward conductance by a factor of 3.4 +/- 0.4 in 15 min and by a factor of 5.7 +/- 0.9 in 30 min (n = 22). Replacing external Na by Cs blocked inward conductance but increased whole-cell conductance by a factor of 4.5 +/- 0.5 over a period of 40 min (n = 15). In addition to this slow increase in conductance, there was also a small, rapid increase in conductance that occurred as soon as ROMK was exposed to external cesium or 10 mM K. This rapid increase could be explained by the observed increase in ROMK single-channel conductance from 6.4 +/- 0.8 pS to 11.1 +/- 0.8 pS (10 mM K, n = 8) or 11.7 +/- 1.2 pS (Cs, n = 8). There was no effect of either 10 mM K or cesium on the high open probability (P(o) = 0.97 +/- 0.01; n = 12) of ROMK outward currents. In patch-clamp recordings, the number of active channels increased when the K concentration at the outside surface was raised from 1 to 50 mM K. In cell-attached patches, exposure to 50 mM external K produced one or more additional channels in 9/16 patches. No change in channel number was observed in patches continuously exposed to 50 mM external K. Hence, the slow increase in whole-cell conductance is interpreted as activation of pre-existing ROMK channels that had been inactivated by low external K. This type of time-dependent channel activation was not seen with IRK1 (K(ir)2.1) or in ROMK2 mutants in which any one of 6 residues, F129, Q133, E132, V121, L117, or K61, were replaced by their respective IRK1 homologs. These results are consistent with a model in which ROMK can exist in either an activated mode or an inactivated mode. Within the activated mode, individual channels undergo rapid transitions between open and closed states. High (10 mM) external K or Cs stabilizes the activated mode, and low external K stabilizes the inactivated mode. Mutation of a pH-sensing site (ROMK2-K61) prevents transitions from activated to inactivated modes. This is consistent with a direct effect of external K or Cs on the gating of ROMK by internal pH.  相似文献   

17.
Macrophages derived from phorbol ester-induced human leukemic (HL-60) cells exhibit a voltage-activated inward rectifying potassium conductance which was modulated by macrophage colony-stimulating factor (Wieland, S. J., Chou, R. H., and Gong, Q. H. (1990) J. Cell. Physiol. 142, 643-651). Roles of intracellular messengers in this regulatory mechanism were investigated. Intracellular dialysis with inositol 1,3,4,5-tetrakisphosphate (IP4) or inositol 1,4,5-trisphosphate during tight-seal whole cell recording produced a rapid increase in the inward rectifying conductance. Changes in intracellular Ca2+ levels alone did not reproduce the stimulatory effect of these modulators. Intracellular dialysis with guanosine 5'-O-(thiotriphosphate) (GTP gamma S) resulted in profound inhibition of this conductance. These data suggest a novel cellular function for inositol polyphosphates, particularly IP4, and show antagonistic modulation with GTP gamma S on a human macrophage inward rectifier.  相似文献   

18.
Calcium currents in a fast-twitch skeletal muscle of the rat   总被引:9,自引:5,他引:4       下载免费PDF全文
Slow ionic currents were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Sodium and delayed rectifier potassium currents were blocked pharmacologically. Under these conditions, depolarizing test pulses elicited an early outward current, followed by a transient slow inward current, followed in turn by a late outward current. The early outward current appeared to be a residual delayed rectifier current. The slow inward current was identified as a calcium current on the basis that (a) its magnitude depended on extracellular calcium concentration, (b) it was blocked by the addition of the divalent cations cadmium or nickel, and reduced in magnitude by the addition of manganese or cobalt, and (c) barium was able to replace calcium as an inward current carrier. The threshold potential for inward calcium current was around -20 mV in 10mM extracellular calcium and about -35 mV in 2 mM calcium. Currents were net inward over part of their time course for potentials up to at least +30 mV. At temperatures of 20-26 degrees C, the peak inward current (at approximately 0 mV) was 139 +/- 14 microA/cm2 (mean +/- SD), increasing to 226 +/- 28 microA/cm2 at temperatures of 27-37 degrees C. The late outward current exhibited considerable fiber-to-fiber variability. In some fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it was primarily a time-independent, nonlinear leakage current. In other fibers it appeared to be the sum of both leak and a slowly activated outward current. The rate of activation of inward calcium current was strongly temperature dependent. For example, in a representative fiber, the time-to-peak inward current for a +10-mV test pulse decreased from approximately 250 ms at 20 degrees C to 100 ms at 30 degrees C. At 37 degrees C, the time-to-peak current was typically approximately 25 ms. The earliest phase of activation was difficult to quantify because the ionic current was partially obscured by nonlinear charge movement. Nonetheless, at physiological temperatures, the rate of calcium channel activation in rat skeletal muscle is about five times faster than activation of calcium channels in frog muscle. This pathway may be an important source of calcium entry in mammalian muscle.  相似文献   

19.
The voltage dependent ionic conductances were studied by analysing the phase plane trajectories of action potentials evoked by electrical stimulation of the sartorius muscles of the frog (Rana esculenta). The delayed outward potassium current was measured also under voltage clamp conditions on muscle fibres of either the frog (Rana esculenta) or Xenopus laevis. On analysing the effect of physostigmine decreasing the peak amplitude, the rate of both the rising and falling phases of the action potentials, it was revealed that the alkaloid at a concentration of 1 mmol/l reduced significantly both the delayed potassium conductance and the outward ionic current values during the action potentials. The inhibition of sodium conductance and inward ionic current was less expressed. The maximum value of delayed potassium conductance measured under voltage clamp conditions was decreased by 1 mmol/l physostigmine. The time constant determined from the development of delayed potassium conductance was increased at a given membrane potential. The voltage vs. n relationship describing the membrane potential dependence of the delayed rectifier was not influenced by physostigmine. It has been concluded that physostigmine changes the time course of the action potentials by decreasing the value of both voltage dependent ionic conductances and by slowing down their kinetics. It is discussed that results obtained from the phase plane analysis of complex pharmacological effects can only be accepted with some restrictions.  相似文献   

20.
The conductance of single fibres from m. ileofibularis of Rana esculenta was studied in isotonic K2SO4 solution under constant--current conditions using the double sucrose gap method. The antibiotic gramicidin A effects a drastic increase of membrane conductance. Variation of the gramicidin-induced conductance with gramicidin concentration in the bathing solution (10(-8)-5,5 . 10(-7) M) was investigated. Gramicidin-induced conductance was proportional to the square of gramicidin concentration in the solution, as expected in a channel made of gramicidin dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号