首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
肠出血性大肠杆菌O157:H7监测及分析   总被引:3,自引:0,他引:3  
为了了解长春地区动物和人感染肠出血性大肠杆菌O157H7状况,建立流行病学监测网.采集长春市动物养殖场动物粪便和腹泻病人便样进行监测.结果在牛粪和鸡粪中共检出2株O157H7大肠杆菌.可见,在长春地区存在肠出血性大肠杆菌O157H7菌潜在污染的威胁,需要加强监测力度.  相似文献   

3.
AIMS: To determine if exogenous melatonin (MEL) influences growth of Escherichia coli O157:H7 in pure culture and if MEL affects faecal shedding patterns of E. coli O157:H7 or total leucocyte counts in sheep. METHODS AND RESULTS: Two strains of E. coli O157:H7 were cultured in the presence of varying concentrations of MEL. Maximal specific growth rates of E.coli O157:H7 strains were not affected by MEL addition in pure culture. Wethers (n = 16) received either 0 (CONT) or 25 mg MEL hd(-1) day(-1) for 21 days. Daily shedding patterns of E. coli O157:H7 were not different (P > 0.10) between groups with faecal populations of E. coli O157:H7 decreasing daily (P < 0.01) in both groups. However, shedding tended to differ between the control and treated group by the end of the experiment. Total WBC and differential leucocyte counts were not affected by treatment. CONCLUSIONS: Melatonin had no affect on specific growth rates in pure culture nor did the administration of exogenous MEL alter bacterial shedding patterns or immune response indicators in experimentally infected wethers exposed to a long photoperiod. SIGNIFICANCE AND IMPACT OF THE STUDY: Although MEL did not affect shedding patterns or gastrointestinal populations of E. coli O157:H7, the tendency for MEL-treated sheep to shed less E. coli O157:H7 towards the end of the experiment warrants further research. Providing MEL for a longer period of time, or at greater concentrations, may elucidate a potential role that MEL plays in the seasonal shedding patterns of E. coli O157:H7 in livestock.  相似文献   

4.
A mouse monoclonal antibody specific for the R3 lipopolysaccharide core type of Escherichia coli was used to determine the core type of E. coli O157:H7 and other non-O157 verotoxin-producing E. coli strains. Lipopolysaccharide extracts from 28 clinical isolates were examined by sodium dodecylsulfate-polyacrylamide gel electrophoresis and immunoblotting and all were found to have the R3 core. None of the core lipopolysaccharide from the strains tested reacted with the control R1 and R2 specific monoclonal antibodies. A common core type between all the verotoxin-producing E. coli strains tested may be significant when considering the immune response to these bacteria, and to the receptor for the VT bacteriophage.  相似文献   

5.
6.
The influence of modified-atmosphere packaging, storage temperature, and time on survival and growth of Escherichia coli O157:H7 inoculated onto shredded lettuce, sliced cucumber, and shredded carrot was determined. Growth of psychotrophic and mesophilic microorganisms and changes in pH and sensory qualities of vegetables, as judged by subjective evaluation, were also monitored. Packaging under an atmosphere containing 3% oxygen and 97% nitrogen had no apparent effect on populations of E. coli O157:H7, psychotrophs, or mesophiles. Populations of viable E. coli O157:H7 declined on vegetables stored at 5 degrees C and increased on vegetables stored at 12 and 21 degrees C for up to 14 days. The most rapid increases in populations of E. coli O157:H7 occurred on lettuce and cucumbers stored at 21 degrees C. These results suggest that an unknown factor(s) associated with carrots may inhibit the growth of E. coli O157:H7. The reduction in pH of vegetables was correlated with initial increases in populations of E. coli O157:H7 and naturally occurring microfloras. Eventual decreases in E. coli O157:H7 in some samples, e.g., those stored at 21 degrees C, are attributed to the toxic effect of accumulated acids. Changes in visual appearance of vegetables were not influenced substantially by growth of E. coli O157:H7. The ability of E. coli O157:H7 to growth on raw salad vegetables subjected to processing and storage conditions simulating those routinely used in commercial practice has been demonstrated.  相似文献   

7.
AIMS: To assess a collection of 96 Escherichia coli O157:H7 strains for their resistance potential against a set of colicinogenic E. coli developed as a probiotic for use in cattle. METHODS AND RESULTS: Escherichia coli O157:H7 strains were screened for colicin production, types of colicins produced, presence of colicin resistance and potential for resistance development. Thirteen of 14 previously characterized colicinogenic E. coli strains were able to inhibit 74 serotype O157:H7 strains. Thirteen E. coli O157:H7 strains were found to be colicinogenic and 11 had colicin D genes. PCR products for colicins B, E-type, Ia/Ib and M were also detected. During in vitro experiments, the ability to develop colicin resistance against single-colicin producing E. coli strains was observed, but rarely against multiple-colicinogenic strains. The ability of serotype O157:H7 strains to acquire colicin plasmids or resistance was not observed during a cattle experiment. CONCLUSIONS: Escherichia coli O157:H7 has the potential to develop single-colicin resistance, but simultaneous resistance against multiple colicins appears to be unlikely. Colicin D is the predominant colicin produced by colicinogenic E. coli O157:H7 strains. SIGNIFICANCE AND IMPACT OF THE STUDY: The potential for resistance development against colicin-based strategies for E. coli O157:H7 control may be very limited if more than one colicin type is used.  相似文献   

8.
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 107 or 1010 CFU/strain/animal. The other strains were given only at 1010 CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 107 or 1010 CFU. One of the ETEC strains also persisted when inoculated at 1010 CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 107 CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli.  相似文献   

9.
Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 10(7) or 10(10) CFU/strain/animal. The other strains were given only at 10(10) CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 10(7) or 10(10) CFU. One of the ETEC strains also persisted when inoculated at 10(10) CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 10(7) CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli.  相似文献   

10.
Although the main reservoirs for pathogenic Escherichia coli O157:H7 are cattle and the cattle environment, factors that affect its tenure in the bovine host and its survival outside humans and cattle have not been well studied. It is also not understood what physiological properties, if any, distinguish these pathogens from commensal counterparts that live as normal members of the human and bovine gastrointestinal tracts. To address these questions, individual and competitive fitness experiments, indirect antagonism assays, and antibiotic resistance and carbon utilization analyses were conducted using a strain set consisting of 122 commensal and pathogenic strains. The individual fitness experiments, under four different environments (rich medium, aerobic and anaerobic; rumen medium, anaerobic; and a minimal medium, aerobic) revealed no differences in growth rates between commensal E. coli and E. coli O157:H7 strains. Indirect antagonism assays revealed that E. coli O157:H7 strains more frequently produced inhibitory substances than commensal strains did, under the conditions tested, although both groups displayed moderate sensitivity. Only minor differences were noted in the antibiotic resistance patterns of the two groups. In contrast, several differences between commensal and O157:H7 groups were observed based on their carbon utilization profiles. Of 95 carbon sources tested, 27 were oxidized by commensal E. coli strains but not by the E. coli O157:H7 strains. Despite the observed physiological and biochemical differences between these two groups of E. coli strains, however, the O157:H7 strains did not appear to possess traits that would confer advantages in the bovine or extraintestinal environment.  相似文献   

11.
Although the main reservoirs for pathogenic Escherichia coli O157:H7 are cattle and the cattle environment, factors that affect its tenure in the bovine host and its survival outside humans and cattle have not been well studied. It is also not understood what physiological properties, if any, distinguish these pathogens from commensal counterparts that live as normal members of the human and bovine gastrointestinal tracts. To address these questions, individual and competitive fitness experiments, indirect antagonism assays, and antibiotic resistance and carbon utilization analyses were conducted using a strain set consisting of 122 commensal and pathogenic strains. The individual fitness experiments, under four different environments (rich medium, aerobic and anaerobic; rumen medium, anaerobic; and a minimal medium, aerobic) revealed no differences in growth rates between commensal E. coli and E. coli O157:H7 strains. Indirect antagonism assays revealed that E. coli O157:H7 strains more frequently produced inhibitory substances than commensal strains did, under the conditions tested, although both groups displayed moderate sensitivity. Only minor differences were noted in the antibiotic resistance patterns of the two groups. In contrast, several differences between commensal and O157:H7 groups were observed based on their carbon utilization profiles. Of 95 carbon sources tested, 27 were oxidized by commensal E. coli strains but not by the E. coli O157:H7 strains. Despite the observed physiological and biochemical differences between these two groups of E. coli strains, however, the O157:H7 strains did not appear to possess traits that would confer advantages in the bovine or extraintestinal environment.  相似文献   

12.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli O157:H7 (EHEC) form characteristic lesions on infected mammalian cells called actin pedestals. Each of these two pathogens injects its own translocated intimin receptor (Tir) molecule into the plasma membranes of host cells. Interaction of translocated Tir with the bacterial outer membrane protein intimin is required to trigger the assembly of actin into focused pedestals beneath bound bacteria. Despite similarities between the Tir molecules and the host components that associate with pedestals, recent work indicates that EPEC and EHEC Tir are not functionally interchangeable. For EPEC, Tir-mediated binding of Nck, a host adaptor protein implicated in actin signaling, is both necessary and sufficient to initiate actin assembly. In contrast, for EHEC, pedestals are formed independently of Nck, and require translocation of bacterial factors in addition to Tir to trigger actin signaling.  相似文献   

13.
14.
Yue WF  Du M  Zhu MJ 《PloS one》2012,7(2):e31308

Background

Shiga toxin (stx) genes have been transferred to numerous bacteria, one of which is E. coli O157:H7. It is a common belief that stx gene is transferred by bacteriophages, because stx genes are located on lambdoid prophages in the E. coli O157:H7 genome. Both E. coli O157:H7 and non-pathogenic E. coli are highly enriched in cattle feedlots. We hypothesized that strong UV radiation in combination with high temperature accelerates stx gene transfer into non-pathogenic E. coli in feedlots.

Methodology/Principal Findings

E. coli O157:H7 EDL933 strain were subjected to different UV irradiation (0 or 0.5 kJ/m2) combination with different temperature (22, 28, 30, 32, and 37°C) treatments, and the activation of lambdoid prophages was analyzed by plaque forming unit while induction of Stx2 prophages was quantified by quantitative real-time PCR. Data showed that lambdoid prophages in E. coli O157:H7, including phages carrying stx2, were activated under UV radiation, a process enhanced by elevated temperature. Consistently, western blotting analysis indicated that the production of Shiga toxin 2 was also dramatically increased by UV irradiation and high temperature. In situ colony hybridization screening indicated that these activated Stx2 prophages were capable of converting laboratory strain of E. coli K12 into new Shiga toxigenic E. coli, which were further confirmed by PCR and ELISA analysis.

Conclusions/Significance

These data implicate that high environmental temperature in combination with UV irradiation accelerates the spread of stx genes through enhancing Stx prophage induction and Stx phage mediated gene transfer. Cattle feedlot sludge are teemed with E. coli O157:H7 and non-pathogenic E. coli, and is frequently exposed to UV radiation via sunlight, which may contribute to the rapid spread of stx gene to non-pathogenic E. coli and diversity of shiga toxin producing E. coli.  相似文献   

15.
The rpoS nucleotide and predicted amino acid sequences from three Escherichia coli O157:H7 isolates were compared with those from three other E. coli isolates, including the likely O157:H7 progenitor, E. coli O55:H7. These clinical and environmental isolates all had identical sigma S amino acid sequences, while laboratory strains K12 and DH1 had three and one amino acid alterations, respectively, in comparison with the majority sequence. To extend the analysis of sigma S sequence conservation to include other Gram-negative bacteria, the E. coli sigma S sequences were compared with those from diverse Gram-negative organisms; sigma S sequence identities ranged from 50.2 to 99.7% among the available sequences. The results further confirm the existence of rpoS alleles among different E. coli strains, although all strains were classified as acid-resistant with survival rates > 10% after 2 h exposure to pH 2.5. It was also found that all E. coli O157:H7 isolates tested had a unique nucleotide at position 543, thus differentiating these strains from other E. coli serotypes.  相似文献   

16.
A flow-through amperometric immunofiltration assay system based on disposable porous filter-membranes for rapid detection of Escherichia coli O157:H7 has been developed. The analytical system utilizes flow-through, immunofiltration and enzyme immunoassay techniques in conjunction with an amperometric sensor. The parameters affecting the immunoassay such as selection of appropriate filter membranes, membrane pore size, antibody binding capacity and the concentrations of immunoreagents were investigated and optimized. Non-specific adsorption of the enzyme conjugate was investigated and minimized. A sandwich scheme of immunoassay was employed and the immunofiltration system allows to specifically and directly detect E. coli cells with a lower detection limit of 100 cells/ml. The working range is from 100 to 600 cells/ml with an overall analysis time of 30 min. No pre-enrichment was needed. This immunosensor can be easily adapted for assay of other microorganisms and may be a basis for a new class of highly sensitive bioanalytical devices for rapid quantitative detection of bacteria.  相似文献   

17.
Previously, we produced two groups of gnotobiotic mice, GB-3 and GB-4, which showed different responses to Escherichia coli O157:H7 challenge. E. coli O157:H7 was eliminated from GB-3, whereas GB-4 mice became carriers. It has been reported that the lag time of E. coli O157:H7 growth in 50% GB-3 caecal suspension was extended when compared to GB-4 caecal suspension. In this study, competition for nutrients between intestinal microbiota of GB-3 and GB-4 mice and E. coli O157:H7 was examined. Amino acid concentrations in the caecal contents of GB-3 and GB-4 differed, especially the concentration of proline. The supplementation of proline into GB-3 caecal suspension decreased the lag time of E. coli O157:H7 growth in vitro. When E. coli O157:H7 was cultured with each of the strains used to produce GB-3 mice in vitro, 2 strains of E. coli (proline consumers) out of 5 enterobacteriaceae strains strongly suppressed E. coli O157:H7 growth and the suppression was attenuated by the addition of proline into the medium. These results indicate that competition for proline with indigenous E. coli affected the growth of E. coli O157:H7 in vivo and may contribute to E. coli O157:H7 elimination from the intestine.  相似文献   

18.
根据GenBank中VT1、VT2毒素的基因序列设计合成2对引物,以大肠杆菌O157:H7菌株DNA为模板,扩 增vt1、vt2。诱导只扩增出vt2的菌株释放噬菌体,利用多种指示菌经双层琼脂平板法来分离纯化VT2噬菌体,观 察噬菌斑的特征,提纯病毒粒子进行电镜观察,并对噬菌体中vt2基因检测、克隆和序列分析。结果显示VT2噬菌 体感染MC1061在双层琼脂平板上形成的噬菌斑小而混浊,多呈磨玻璃样;而首次感染大肠杆菌CC118(λpir),此 后用MC1061分离的噬菌体,再以MC1061为指示菌,在双层琼脂平板上形成小而清晰透明的噬菌斑。电镜下噬 菌体头部呈六边形外廓,尾部细长无尾鞘结构。以噬菌体DNA为模板进行PCR扩增,检测到vt2特异性DNA 带,克隆的vt2基因序列与GenBank中编码VT2毒素的核苷酸序列(X07865,NC_002655,BA000007,AF291819) 的同源性分别达到99%,确定编码VT2毒素的基因位于噬菌体上,并获得VT2噬菌体(?)HY。  相似文献   

19.
根据GenBank中VT1、VT2毒素的基因序列设计合成2对引物,以大肠杆菌O157H7菌株DNA为模板,扩增vt1、vt2.诱导只扩增出vt2的菌株释放噬菌体,利用多种指示菌经双层琼脂平板法来分离纯化VT2噬菌体,观察噬菌斑的特征,提纯病毒粒子进行电镜观察,并对噬菌体中vt2基因检测、克隆和序列分析.结果显示VT2噬菌体感染MC1061在双层琼脂平板上形成的噬菌斑小而混浊,多呈磨玻璃样;而首次感染大肠杆菌CC118(λpir),此后用MC1061分离的噬菌体,再以MC1061为指示菌,在双层琼脂平板上形成小而清晰透明的噬菌斑.电镜下噬菌体头部呈六边形外廓,尾部细长无尾鞘结构.以噬菌体DNA为模板进行PCR扩增,检测到vt2特异性DNA带,克隆的vt2基因序列与GenBank中编码VT2毒素的核苷酸序列(X07865,NC_002655,BA000007,AF291819)的同源性分别达到99%,确定编码VT2毒素的基因位于噬菌体上,并获得VT2噬菌体()HY.  相似文献   

20.
A mosaic genomic island comprising Shigella resistance locus (SRL) sequences flanked by segments of Escherichia coli O157:H7 strain EDL933 O islands 43, 81, and 82 was identified in sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-) strain 493/89. This mosaic island is absent from strain EDL933. PCR targeting the SRL-related sequence is a useful tool to distinguish SF EHEC O157:H(-) from EHEC O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号