首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Despite many comparative analyses and more than 20 proposed hypotheses, there is still little consensus over the factors promoting the evolution of reversed sexual dimorphism (RSD) in raptorial species. Furthermore, intrapopulation studies, which may elucidate how RSD is maintained once evolved, have been surprisingly scarce and only focused on a handful of species with medium to high dimorphism. We examined the reproductive advantages associated with body size and condition, measured in the pre‐laying period, in a diurnal raptor with low sexual dimorphism, the black kite (Milvus migrans). The study population was essentially monomorphic in size. For females, there was an evidence of reproductive benefits associated with larger size and/or with better body condition. Larger females had also access to higher quality partners and territories, consistent with the ‘intrasexual selection’ hypothesis, by which members of the larger sex enjoy size‐related advantages in intrasexual competition over a scarce resource, the smaller sex. Opposite trends emerged for males: smaller, leaner males had higher breeding output, consistent with the ‘small efficient male’ hypothesis. Overall, the fact that we observed in an essentially monomorphic population the same selection pressures previously found in species with marked dimorphism suggests that such reproductive advantages may be counterbalanced in our study model by opposite selection pressures during other stages of the life cycle. This casts some doubts on the evolutionary significance of studies focusing exclusively on reproduction and calls for the need of more comprehensive analyses incorporating trait‐mediated differentials in survival and recruitment.  相似文献   

2.
Bill size is often viewed as a species‐specific adaptation for feeding, but it sometimes varies between sexes, suggesting that sexual selection or intersexual competition may also be important. Hypotheses to explain sexual dimorphism in avian bill size include divergence in feeding niche or thermoregulatory demands, intrasexual selection based on increased competition among males, or female preference. Birds also show seasonal changes in bill size due to shifts in the balance between growth rate and wear, which may be due to diet or endogenous rhythms in growth. Insight into the function of dimorphism can be gained using the novel approach of digital x‐ray imaging of museum skins to examine the degree to which the skeletal core or the rhamphotheca contribute to overall dimorphism. The rhamphotheca is ever‐growing and ever‐wearing, varying in size throughout life; whereas the skeletal core shows determinant growth. Because tidal marsh sparrows are more dimorphic in bill size than related taxa, we selected two marsh taxa to investigate dimorphism and seasonality in the size of the overall bill, the skeletal core, and the rhamphotheca. Bill size varied by sex and season, with males having larger bills than females, and bill size increasing from nonbreeding to breeding season more in males. Skeletal bill size varied with season, but not sex. The rhamphotheca varied primarily with sex; males had a larger rhamphotheca (corrected for skeletal bill size), which showed a greater seasonal increase than females. The rhamphotheca, rather than the skeletal bill, was responsible for sexual dimorphism in overall bill size, which was particularly well developed in the breeding season. The size of the rhamphotheca may be a condition‐based character that is shaped by sexual selection. These results are consistent with the evidence that bill size is influenced by sexual selection as well as trophic ecology.  相似文献   

3.
Most studies on sexual size dimorphism address proximate and functional questions related to adults, but sexual size dimorphism usually develops during ontogeny and developmental trajectories of sexual size dimorphism are poorly understood. We studied three bird species with variation in adult sexual size dimorphism: black coucals (females 69% heavier than males), white-browed coucals (females 13% heavier than males) and ruffs (males 70% heavier than females). Using a flexible Bayesian generalized additive model framework (GAMM), we examined when and how sexual size dimorphism developed in body mass, tarsus length and bill length from hatching until fledging. In ruffs, we additionally examined the development of intrasexual size variation among three morphs (Independents, Satellites and Faeders), which creates another level of variation in adult size of males and females. We found that 27–100% of the adult inter- and intrasexual size variation developed until fledging although none of the species completed growth during the observational period. In general, the larger sex/morph grew more quickly and reached its maximal absolute growth rate later than the smaller sex/morph. However, when the daily increase in body mass was modelled as a proportion, growth patterns were synchronized between and within sexes. Growth broadly followed sigmoidal asymptotic models, however only with the flexible GAMM approach, residual distributions were homogeneous over the entire observation periods. These results provide a platform for future studies to relate variation in growth to selective pressures and proximate mechanisms in these three species, and they highlight the advantage of using a flexible model approach for examining growth variation during ontogeny.  相似文献   

4.
中国石龙子个体发育过程中头部两性异型和食性的变化   总被引:11,自引:1,他引:10  
许多动物呈现个体大小、局部形态特征 (头部大小 )和体色的两性异形[5,14 ,15,2 1,2 2 ] 。 Darwin[12 ] 认为两性谋求各自最大的繁殖利益导致了两性异形 ,因此两性异形是性选择压力作用的结果。自 Darwin以来 ,许多同行认为性选择压力和非性选择压力均能导致动物的两性异形 ,两种选择压力在不同的动物中所起的作用是不同的 [2~ 5,7,10 ,16,2 1~ 2 6] 。性选择压力导致的两性异形与繁殖成功率直接有关。非性选择压力导致的两性异形与繁殖成功率无关或无直接的关系 ,如两性寿命的差异 [13 ]、两性食性的分离 [6,2 1]和两性分配用于生长的…  相似文献   

5.
Behavioural variation among conspecifics is typically contingent on individual state or environmental conditions. Sex-specific genetic polymorphisms are enigmatic because they lack conditionality, and genes causing adaptive trait variation in one sex may reduce Darwinian fitness in the other. One way to avoid such genetic antagonism is to control sex-specific traits by inheritance via sex chromosomes. Here, controlled laboratory crossings suggest that in snail-brooding cichlid fish a single locus, two-allele polymorphism located on a sex-linked chromosome of heterogametic males generates an extreme reproductive dimorphism. Both natural and sexual selection are responsible for exceptionally large body size of bourgeois males, creating a niche for a miniature male phenotype to evolve. This extreme intrasexual dimorphism results from selection on opposite size thresholds caused by a single ecological factor, empty snail shells used as breeding substrate. Paternity analyses reveal that in the field parasitic dwarf males sire the majority of offspring in direct sperm competition with large nest owners exceeding their size more than 40 times. Apparently, use of empty snail shells as breeding substrate and single locus sex-linked inheritance of growth are the major ecological and genetic mechanisms responsible for the extreme intrasexual diversity observed in Lamprologus callipterus.  相似文献   

6.
In many anurans, the forelimb muscles of males are used to grasp females and are often heavier than those of females despite the larger female body size. Such sexual dimorphism in forelimb musculature is thought to result from sexual selection. In addition, the hindlimbs of frogs and toads play an important role in the reproductive process as amplectant males can expel rivals with robust hindlimbs through kicking. In this study, the sexual dimorphism in dry mass for six hindlimb muscles of the Asiatic toad(Bufo gargarizans) was investigated. The results showed that, when controlled for body size, the hindlimb muscle mass of males significantly exceeded that of females for every muscle. The hindlimb muscle mass of amplectant males was also significantly larger than that of non-amplectant males. These results suggested that if strong hindlimb muscles could improve mating success of males, sexual selection would promote the evolution of dimorphism in this character.  相似文献   

7.
Sexual dimorphisms in weaponry and aggression are common in species in which one sex (usually males) competes for access to mates or resources necessary for reproduction – sexually dimorphic weaponry and aggression, in other words, are frequently the result of intrasexual selection. In snapping shrimp, the major chela (snapping claw) can be a deadly weapon, and males of many species have larger chelae than females, a pattern readily interpreted as resulting from intrasexual selection. Thus, males might be expected to show more sex‐specific aggression than females, and be more aggressive overall. We tested these predictions in two species of snapping shrimp in a territorial defense context. Neither of these predictions was supported: in both species, females, but not males, engaged in sex‐specific aggression and females were more aggressive than males overall. These contrasting sexual dimorphisms – larger weaponry in males but higher aggression in females – highlight the importance of considering the function of weaponry and aggression in contexts other than direct competitions over mates. In addition, species differences in the degree of sexual dimorphism in chela size were due to differences in female, not male, chela size, and the species with greater sexual dimorphism in weaponry was significantly less aggressive overall; also, while paired and solitary males did not differ in residual chela size, for the species with greater sexual dimorphism, females carrying embryos had smaller residual chela sizes. These results suggest that understanding the sexual dimorphisms in weaponry and aggression in snapping shrimp requires understanding the relative costs and benefits of both in females as well as males.  相似文献   

8.
In many species of lizards, males attain greater body size and have larger heads than female lizards of the same size. Often, the dimorphism in head size is paralleled by a dimorphism in bite force. However, the underlying functional morphological basis for the dimorphism in bite force remains unclear. Here, we test whether males are larger, and have larger heads and bite forces than females for a given body size in a large sample of Anolis carolinensis . Next, we test if overall head shape differs between the sexes, or if instead specific aspects of skull shape can explain differences in bite force. Our results show that A. carolinensis is indeed dimorphic in body and head size and that males bite harder than females. Geometric morphometric analyses show distinct differences in skull shape between males and females, principally reflecting an enlargement of the jaw adductor muscle chamber. Jaw adductor muscle mass data confirm this result and show that males have larger jaw adductors (but not jaw openers) for a given body and head size. Thus, the observed dimorphism in bite force in A. carolinensis is not merely the result of an increase in head size, but involves distinct morphological changes in skull structure and the associated jaw adductor musculature.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 111–119.  相似文献   

9.
Studying sexual dimorphism facilitates better understanding of the general intersexual divergence of the same species and gives insights into the impact of selective forces on each sex. The sexual dimorphism in anuran external morphology or limb muscles has been well studied in reproductive context, but less so outside the breeding season. Herein, the intersexual differences in 12 external morphological characteristics, 11 forelimb and 12 hindlimb muscles of Hylarana guentheri during non-breeding season were investigated. We found that the males possessed significantly greater head width and tympanum diameter, while the females had significantly larger body size and head length; there was no sexual differences in the examined limb muscles, except for the mass of flexor carpi radialis. The larger body size means greater fertility for the females, and the longer head may be related to the allometry and reduce resource competition. For the males, the wider head is likely correlated with prey size and male–male competition, and also, the larger tympanum and heavier flexor carpi radialis probably aid the productive success. This study provides the comprehensive morphological accounts about the sexual differences of H. guentheri during non-breeding season, which will contribute to clarify the sex-specific resource allocation and reproductive strategies of anurans.  相似文献   

10.
Sexually dimorphic weaponry often results from intrasexual selection, and weapon size can vary seasonally when costs of bearing the weapon exceed the benefits outside of the reproductive season. Weapons can also be favored in competition over nonreproductive resources such as food or shelter, and if such nonreproductive competition occurs year‐round, weapons may be less likely to vary seasonally. In snapping shrimp (Alpheus angulosus), both sexes have an enlarged snapping claw (a potentially deadly weapon), and males of many species have larger claws than females, although females are more aggressive. This contrasting sexual dimorphism (larger weaponry in males, higher aggression in females) raises the question of whether weaponry and aggression are favored by the same mechanisms in males and females. We used field data to determine whether either sex shows seasonal variation in claw size such as described above. We found sexual dimorphism increased during the reproductive season due to opposing changes in both male and female claw size. Males had larger claws during the reproductive season than during the nonreproductive season, a pattern consistent with sexual selection. Females, however, had larger claws during the nonreproductive season than during the reproductive season—a previously unknown pattern of variation in weapon size. The observed changes in female weapon size suggest a trade‐off between claw growth and reproduction in the reproductive season, with investment in claw growth primarily in the nonreproductive season. Sexually dimorphic weaponry in snapping shrimp, then, varies seasonally due to sex differences in seasonal patterns of investment in claw growth, suggesting claws may be advantageous for both sexes but in different contexts. Thus, understanding sexual dimorphisms through the lens of one sex yields an incomplete understanding of the factors favoring their evolution.  相似文献   

11.
Sexual dimorphism of phenotypic traits associated with resource use is common in animals, and may result from niche divergence between sexes. Snakes have become widely used in studies of the ecological basis of sexual dimorphism because they are gape‐limited predators and their head morphology is likely to be a direct indicator of the size and shape of prey consumed. We examined sexual dimorphism of body size and head morphology, as well as sexual differences in diet, in a population of Mexican lance‐headed rattlesnakes, Crotalus polystictus, from the State of México, Mexico. The maximum snout–vent length of males was greater than that of females by 21%. Males had relatively larger heads, and differed from females in head shape after removing the effects of head size. In addition, male rattlesnakes showed positive allometry in head shape: head width was amplified, whereas snout length was truncated with increased head size. By contrast, our data did not provide clear evidence of allometry in head shape of females. Adults of both males and females ate predominately mice and voles; however, males also consumed a greater proportion of larger mammalian species, and fewer small prey species. The differences in diet correspond with dimorphism in head morphology, and provide evidence of intersexual niche divergence in the study population. However, because the sexes overlapped greatly in diet, we hypothesize that diet and head dimorphisms in C. polystictus are likely related to different selection pressures in each sex arising from pre‐existing body size differences rather than from character displacement for reducing intersexual competition. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 633–640.  相似文献   

12.
One paradoxical finding in some mammals is the presence of male–male intrasexual competition in the absence of sexual size dimorphism. It has been a major goal of evolutionary biologists for over a century to understand why some species in which large males can monopolize multiple mates while excluding smaller competitors, exhibit little or no sexual dimorphism. In this paper I examine three of the main hypotheses that have been proposed to explain this conundrum using as study case the Heteromyidae, a rodent family with subtle sexual size dimorphism. Using a phylogenetic comparative approach, I address the potential influence of (1) fecundity selection, (2) covariation between pre- and post-copulatory traits, and (3) environmental constraints (resource shortage) in explaining patterns of body size and sexual size dimorphism (SSD) across 62 heteromyid species. Baculum size, a proxy of the strength of post-copulatory sexual selection, and SSD were negatively correlated suggesting that heteromyid rodents balance their reproductive investment between pre- and post-copulatory traits, which may prevent the evolution of extensive SSD. Results also support a role for resource competition in moderating SSD. The amount of SSD correlated negatively with latitude. This can be explained if high productivity relaxes the level of intrasexual competition among females, leading to more male-biased dimorphism since forces acting on both sexes are not cancelled. In line with this argument, territorial species exhibited a higher dimorphism in comparison with social species. No support was found for the fecundity selection hypothesis. Overall, this study provides insight into the factors driving observed patterns of sexual dimorphism in this iconic group and highlights the need to consider a broader framework beyond sexual selection for better understanding the evolution of dimorphism in this family.  相似文献   

13.
Estimating sexual dimorphism in skeletal and dental features of fossil species is difficult when the sex of individuals cannot be reliably determined. Several different methods of estimating dimorphism in this situation have been suggested: extrapolation from coefficients of variation, division of a sample about the mean or median into two subsamples which are then treated as males and females, and finite mixture analysis (specifically for estimating the maximum dimorphism that could be present in a unimodal distribution). The accuracy of none of these methods has been thoroughly investigated and compared in a controlled manner. Such analysis is necessary because the accuracy of all methods is potentially affected by fluctuations in either sample size, sex ratio, or the magnitude of intrasexual variability. Computer modeling experiments show that the mean method is the least sensitive to fluctuations in these parameters and generally provides the best estimates of dimorphism. However, no method can accurately estimate low to moderate levels of dimorphism, particularly if intrasexual variability is high and sex ratios are skewed. © 1994 Wiley-Liss, Inc.  相似文献   

14.
At least two adaptive processes can lead to the evolution of sexual dimorphism: sexual selection (e.g. male-male combat) or natural selection (e.g. dietary divergence). We investigated the adaptive significance of a distinctive pattern of sexual dimorphism in a south-eastern Australian frog, Adelotus brevis. Male Adelotus grow larger than female conspecifics, have larger heads relative to body size, and have large paired projections (‘tusks’) in the lower jaw. All of these traits are rare among anurans. We quantified the degree of dimorphism in Adelotus, and gathered data on diets and mating systems of this species to evaluate the possible roles of sexual selection and dietary divergence in favoring die evolution of these sexually dimorphic traits. Analysis of prey items in alimentary tracts revealed significant sex differences in prey types. For example, females ate proportionally more arthropods and fewer molluscs than did males. However, this difference is likely to be a secondary consequence of habitat differences between the sexes (due in turn to their different reproductive roles) rather than a selective force for the evolution of sexual dimorphism. Calling males spend their time in moist habitats where pondsnails are abundant, whereas females are more often encountered in the drier arthropod-rich woodlands. A three-year behavioural ecology study on a field population revealed that reproductive males engage in agonistic interactions, with the sexually dimorphic tusks used to attack rivals. Larger body size contributed to male reproductive success. Small males were excluded from calling sites and, among the calling males, larger animals had higher reproductive success (numbers of matings) than did smaller individuals. Hence, the atypical pattern of sexual dimorphism in Adelotus brevis seems to have resulted from sexual selection for larger body size and tusk size in males, in the context of male-male agonistic behaviour, rather than natural selection for ecological divergence between the sexes.  相似文献   

15.
Early male arrival at breeding sites, or protandry, is thought to have evolved from intrasexual competition among males for access to mates or breeding resources. Males of polygynous species tend to be larger than females and have exaggerated secondary sexual traits. Additionally, such species show a high degree of protandry, suggesting that timing of arrival is sexually selected. Species showing limited sexual dimorphism and showing sexual monochromatism may be expected to show limited early male arrival. However, there are very few studies of migration timing of the sexes in such species because individuals cannot be readily identified to sex in the hand. In this study, we genetically sexed birds and found no evidence for early male arrival, for a population of migratory Song Sparrows Melospiza melodia . For our study population, males and females display limited sexual size dimorphism and are sexually monochromatic which is characteristic of the species. Fat scores for males were inversely associated with timing of arrival, whereas for females, larger-winged birds arrived sooner – suggesting that early migration timing may be selected for in both sexes.  相似文献   

16.
Sexual and male horn dimorphism in Copris ochus (Coleoptera: Scarabaeidae)   总被引:1,自引:0,他引:1  
Copris ochus (Coleoptera: Scarabaeidae), an endangered species, is the largest dung beetle in Japan. In C. ochus, males have a long head horn, while females lack this long horn (sexual dimorphism). Very large males of C. ochus have disproportionately longer head horns than small males, suggesting male horn dimorphism, although the dimorphism has not been investigated quantitatively. To clarify sexual and male horn dimorphism in C. ochus quantitatively, we examined the scaling relationship between body size (prothorax width) and head horn length in 94 females and 76 males. These beetles were captured during July 1978 from a natural population on Mt. Aso in southwestern Japan using a light trap. Although the horn length of the females and males scaled with prothorax width, the scaling relationship differed between the sexes, i.e., the relationship was linear in females and nonlinear in males. Statistical tests for dimorphism in male horn length showed a significant discontinuous relationship, thus indicating distinct sexual and male dimorphism in head horns. Long- and short-horned C. ochus males may have different reproductive behaviors, as described in other horned dung beetles.  相似文献   

17.
Enlarged weapons and ornamental traits under sexual selection often show a positive allometric relationship with the overall body size. The present study explores the allometry of mandibles and their supporting structure, the head, in males of the European stag beetle, Lucanus cervus. This species shows a remarkable dimorphism in mandible shape and size that are used by males in intraspecific combats. Stag beetles were captured, measured, weighed, and released in the framework of a capture‐mark‐recapture study. The relationship of mandible length (ML) and head width in respect to the overall body size was described by a segmented regression model. A linear relationship was detected between ML and head width. The scaling relationships for both ML and head width identified the same switchpoint, highlighting the advantages of using combined results of weapons and their supporting structures in such analysis. These results led to a more consistent distinction of males in two morphologies: minor and major. The survival probability of individuals was dependent on the morphological class and was higher for minor males than for major. Elytron length and body mass of the individuals did not show any significant variation during the season. Differences in predatory pressure were detected between morphs by the collection and analysis of body fragments due to the predatory activity of corvids. Morphological differences and shift in demographic and ecological parameters between the two classes suggested that selection continues to favor intrasexual dimorphism in this species throughout a trade‐off mechanism between costs and benefits of carrying exaggerated traits. J. Morphol. 276:1193–1204, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Sexual selection should produce sexual size dimorphism in species where larger members of one sex obtain disproportionately more matings. Recent theory suggests that the degree of sexual size dimorphism depends on physical and temporal constraints involving the operational sex ratio, the potential reproductive rate and the trade-off between current reproductive effort and residual reproductive value. As part of a large-scale experiment on dispersal, we investigated the mating system of common brushtail possums inhabiting old-growth Eucalyptus forest in Australia. Paternity was assigned to 20 of 28 pouch-young (maternity known) genotyped at six microsatellite loci. Male mating success was strongly related to body size and age; male body weight and age being highly correlated. Despite disproportionate mating success favouring larger males, sexual size dimorphism was only apparent among older animals. Trapping and telemetry indicated that the operational sex ratio was effectively 1 : 1 and the potential reproductive rate of males was at most four times that of females. Being larger appeared to entail significant survival costs because males 'died-off' at the age at which sexual size dimorphism became apparent (8-9 years). Male and female home ranges were the same size and males appeared to be as sedentary as females. Moreover, longevity appears to be only slightly less important to male reproductive success than it is to females. It is suggested that a sedentary lifestyle and longevity are the key elements constraining selection for greater sexual size dimorphism in this 'model' medium-sized Australian marsupial herbivore.  相似文献   

19.
Sexual dimorphism can result from sexual or ecological selective pressures, but the importance of alternative reproductive roles and trait compensation in generating phenotypic differences between the sexes is poorly understood. We evaluated morphological and behavioral sexual dimorphism in striped bark scorpions (Centruroides vittatus). We propose that reproductive roles have driven sexually dimorphic body mass in this species which produces sex differences in locomotor performance. Poor locomotor performance in the females (due to the burden of being gravid) favors compensatory aggression as part of an alternative defensive strategy, while male morphology is coadapted to support a sprinting-based defensive strategy. We tested the effects of sex and morphology on stinging and sprinting performance and characterized overall differences between the sexes in aggressiveness towards simulated threats. Greater body mass was associated with higher sting rates and slower sprinting within sexes, which explained the greater aggression of females (the heavier sex) and, along with longer legs in males, the improved sprint performance in males. These findings suggest females are aggressive to compensate for locomotor costs of reproduction while males possess longer legs to enhance sprinting for predator evasion and mate finding. Sexual dimorphism in the metasoma (“tail”) was unrelated to stinging and sprinting performance and may best be explained by sexual selection.  相似文献   

20.
Sexually dimorphic signaling is widespread among animals and can act as an honest indicator of mate quality. Additionally, differences in signaling and morphology within a sex can be associated with different strategies for acquiring mates. Weakly electric fish communicate via self-generated electrical fields that transmit information about sex, reproductive state, and social status. The weakly electric knifefish Parapteronotus hasemani exhibits sexual dimorphism in body size as well as substantial within-male variation in body size and jaw length. We asked whether P. hasemani exhibits hormonally mediated sexual dimorphism in electrocommunication behavior. We also asked whether males with short versus long jaws differed significantly from each other in morphology, behavior, hormone levels, or reproductive maturity. Males produced longer chirps than females, but other signal parameters (electric organ discharge frequency; chirp rate and frequency modulation) were sexually monomorphic. Pharmacologically blocking androgen receptors in males reduced chirp duration, suggesting that this sexually dimorphic trait is regulated at least in part by the activational effects of androgens. Males sorted into two distinct morphological categories but did not differ in circulating 11-ketotestosterone or testosterone. Short-jawed males and long-jawed males also did not differ in any aspects of signaling. Thus, chirping and high levels of 11-ketotestosterone were reliably associated with reproductively active males but do not necessarily indicate male type or quality. This contrasts with other alternative male morph systems in which males that differ in morphology also differ in androgen profiles and signaling behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号