首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytokinins are a class of plant growth regulators that regulate several developmental processes in plants, and recently their role in counteracting the deleterious effects of abiotic stresses has been noted. The impacts of kinetin (10 µM, KN; an artificial cytokinin) on growth, photosystem II photochemistry, and nitrogen metabolism in tomato seedlings exposed to two levels (UV-B1, ambient+?1.2 kJ m?2 day?1, and UV-B2, ambient+?2.4 kJ m?2 day?1) of enhanced UV-B radiation were analyzed under open field condition. The growth, pigment contents, carbonic anhydrase activity, photosynthetic O2 yield, and values of chlorophyll a fluorescence parameters: F v/F 0, F v/F m or φP0, ψ 0, φE 0, and PIABS declined, whereas the values of energy flux parameters (ABS/RC, TR0/RC, ET0/RC, and DI0/RC) of PS II, efficiency of water splitting complex (F 0/F v), and respiratory rate of O2 uptake increased under UV-B stress. Likewise, UV-B exposure at both doses significantly inhibited the activity of enzymes involved in nitrogen metabolism: nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase. In contrast, an enhancing effect on glutamate dehydrogenase activity was observed under UV-B stress. Exogenous KN resulted in a significant attenuation in UV-B-induced negative effects on growth, pigments, photosynthesis, and nitrogen metabolism. The study concludes that exogenous KN improved the growth performance of tomato seedlings by attenuating the damaging effects of UV-B radiation on photochemistry of PS II and nitrogen metabolism, and the alleviating effect against the low dose (UV-B1) of UV-B was more pronounced.  相似文献   

2.
To investigate the effects of glucohexaose (P6) on cucumber, leaf CO2 assimilation, chlorophyll fluorescence parameters, chlorophyll content, and carbohydrate metabolism were examined in cucumber plants. The net photosynthetic rate (P n ) of cucumber leaves was enhanced after being treated with 10 μg mL?1 P6. The increase was correlated with increases in transpiration rate (E) and stomatal conductance (G s), whereas the intercellular CO2 concentration (C i) was not different from the control plants. Chlorophyll content, absorption of light energy per unit area (ABS/CS), capture of light energy per unit area (TRo/CS), quantum yield of electron transport per unit area (ETo/CS), maximum photochemical efficiency of PSII (φP o), quantum yield of photosynthetic institution electron transfer (φE o), probability of other electron acceptors that captured exciton-transferred electrons to the electronic chain which exceeds QA (ψ o), number of reaction centers per unit leaf area (RC/CSo), and the performance index on absorption basis (PIABS) were improved, but heat dissipation per unit area (DIo/CS) and maximum quantum yield of non-chemical quenching (φD o) were reduced. In addition, increases in sucrose, soluble sugars, and starch contents were observed in P6-treated plants. However, H2O2 scavenger (DMTU) or NADPH oxidase inhibitor (DPI) pretreatment significantly abolished the effect of P6 on photosynthesis. The results demonstrated that ROS played a critical role in P6-induced photosynthesis. The increase in chlorophyll content together with efficient light absorption, transmission, and conversion in P6-treated plants is important for increasing photosynthesis.  相似文献   

3.
Iron and aluminum (oxyhydr)oxides are ubiquitous in the soil environment and have the potential to strongly affect the properties of dissolved organic matter. We examined the effect of oxide surfaces on soluble nutrient dynamics and microbial community composition using an incubation of forest floor material in the presence of (1) goethite and quartz, (2) gibbsite and quartz, and (3) quartz surfaces. Forest floor material was incubated over a period of 154 days. Aqueous extracts of the incubations were harvested on days 5, 10, 20, 30, 60, 90, and 154, and concentrations of P, N, PO4 3?, NO2 ?, NO3 ?, and organic C were measured in the solutions. Microbial community composition was examined through pyrosequencing of bacterial and fungal small subunit ribosomal RNA genes on selected dates throughout the incubation. Results indicated that oxide surfaces exerted strong control on soluble nutrient dynamics and on the composition of the decomposer microbial community, while possibly having a small impact on system-level respiration. Goethite and gibbsite surfaces showed preferential adsorption of P-containing and high molar mass organic solutes, but not of N-containing compounds. On average, organic C concentrations were significantly lower in water extractable organic matter (WEOM) solutions from oxide treatments than from the control treatment (P = 0.0037). Microbial community composition varied both among treatments and with increasing time of incubation. Variation in bacterial and fungal community composition exhibited strong-to-moderate correlation with length of incubation, and several WEOM physiochemical characteristics including apparent (weight averaged) molar mass, pH and electrical conductivity. Additionally, variation in bacterial community composition among treatments was correlated with total P (r = 0.60, P < 0.0001), PO4 3? (r = 0.79, P < 0.0001), and organic C (r = 0.36, P = 0.015) concentrations; while variation in fungal communities was correlated with organic C concentrations (r = ?0.48, P = 0.0008) but not with phosphorus concentrations. The relatively small impact of oxide surfaces on system-level microbial respiration of organic matter despite their significant effects on microbial community composition and WEOM dynamics lends additional support to the theory of microbial functional redundancy.  相似文献   

4.
To understand the effects of planting tree peony (Paeonia suffruticosa) on soil microbial community structure, soil samples were collected from the tree peony gardens with three peony cultivars and three planting years, and adjacent wasteland at Luoyang, Henan Province of China. Soil microbial communities were analyzed by the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR–DGGE) of partial 16S rDNA and sequencing methods. With the succeeding development of tree peony garden ecosystems, soil pH, organic C, total P, and available P increased. Soil total N, the cell numbers of bacteria, fungi, and actinomycetes, the Shannon’s diversity index (H), richness (S), and Evenness (E H ) first showed an increasing trend after wasteland was reclaimed and then a decreasing trend became apparent after 5 years of planting. Principal component analysis based on DGGE banding patterns showed that the microbial community structures were influenced by tree peony cultivars and planting years, and the influences of planting years were greater than those of tree peony cultivars. Sequence analysis of the DGGE bands revealed that the dominant bacteria in tree peony garden soils belonged to Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Planctomycetes, Euryarchaeota, and Unclassified-bacteria. Moreover, some bacteria closely related to Bradyrhizobium, Sphingopyxis, Novosphingobium, and Sphingomonas, which have been associated with nitrogen fixation and recalcitrant compounds degradation, disappeared with the increasing planting years of tree peony. The bacteria had similarity of 100 % compared with Pseudomonas mandelii which was a denitrifying bacteria, and increased gradually with increasing planting years of tree peony.  相似文献   

5.
Outdoor pot experiments were conducted in California to quantify differences in rice and Schoenoplectus mucronatus susceptibility to drought and to identify morphological and physiological traits that would favor rice over S. mucronatus under drought. Plants were grown in flooded soil for approximately 5 weeks, and then subjected to different drought periods after which pots were re-flooded. Chlorophyll fluorescence assays revealed that rice and S. mucronatus Fv/Fm first became <0.8 after leaf water potential (Ψleaf) had decreased to approximately −4 MPa and −2 MPa, respectively. Thus, by suffering less photosynthetic damage from drought, rice had better recovery after re-flooding than S. mucronatus. When drought reduced Ψleaf to −3 MPa, S. mucronatus re-growth was nearly suppressed but that of rice was unaffected. Rice plants depleted soil moisture 1.6 faster than S. mucronatus due to larger and deeper roots and a high water-spending strategy (when Ψleaf decreased from approximately −0.5 MPa to −2.5 MPa, 13δ increased from −27.8 to −27.4 and from −28.1 to −26.0 for rice and S. mucronatus, respectively). Rice under interspecific competition sustained its Ψleaf by extracting more water from greater depths, while causing severe moisture stress and photosynthetic damage to S. mucronatus. Thus temporary drought enhanced rice competitiveness over S. mucronatus, supporting the concept of using brief drought as a tool for S. mucronatus suppression in rice. The Ψleaf developed by the end of the drought period predicted rice yields (R2 = 0.77, P < 0.0001) and the capacity of S. mucronatus to recover from drought upon irrigation resumption (R2 = 0.62, P < 0.001). Brief (8-10 d) drought imposed on 5-week-old rice did not significantly depress late-season rice biomass growth or grain yields, while S. mucronatus never fully recovered from drought. Rice yields were only reduced after Ψleaf reached values below approximately −2.5 MPa. Longer drought (∼20 d) delayed maturity and reduced rice yields by approximately 60-80%. The dry-down approach could help suppress weeds similar to S. mucronatus in organic rice where premium prices can compensate for lower grain yield.  相似文献   

6.
The wetlands on the Qinghai-Tibet Plateau are experiencing serious degradation, with more than 90,000 hectares of marshland converted to wet meadow or meadow after 40 years of drainage. However, little is known about the effects of wetland conversion on soil C stocks and the quality of soil organic carbon (SOC) (defined by the proportion of labile versus more resistant organic carbon compounds). SOC, microbial biomass carbon, light fraction organic carbon (LFOC), dissolved organic carbon, and the chemical composition of SOC in the soil surface layer (0–10 cm), were investigated along a wetland degradation gradient (marsh, wet meadow, and meadow). Wetland degradation caused a 16 % reduction in the carbon stocks from marsh (178.7 ± 15.2 kg C m?2) to wet meadow (150.6 ± 21.5 kg C m?2), and a 32 % reduction in C stocks of the 0–10 cm soil layer from marsh to meadow (122.2 ± 2.6 kg C m?2). Wetland degradation also led to a significant reduction in SOC quality, represented by the lability of the carbon pool as determined by a density fractionation method (L LFOC), and a significant increase in the stability of the carbon pool as reflected by the alkyl-C:O-alkyl-C ratio. 13C NMR spectroscopy showed that the labile form of C (O-alkyl-C) declined significantly after wetland degradation. These results assist in explaining the transformation of organic C in these plateau wetland soils and suggest that wetland degradation not only caused SOC loss, but also decreased the quality of the SOC of the surface soil.  相似文献   

7.
Soil microbial properties play a key role in belowground ecosystem functioning, but are not well understood in forest ecosystems under nitrogen (N) enrichment. In this study, soil samples from 0–10 cm and 10–20 cm layers were collected from a Dahurian larch (Larix gmelinii Rupr.) plantation in Northeast China after six consecutive years of N addition to examine changes in soil pH, nutrient concentrations, and microbial biomass and activities. Nitrogen addition significantly decreased soil pH and total phosphorus, but had little effect on soil total organic carbon (TOC) and total N (TN) concentrations. The NO 3 ? -N concentrations in the two soil layers under N addition were significantly higher than that in the control, while NH 4 + -N concentrations were not different. After six years of N addition, potential net N mineralization and nitrification rates were dramatically increased. Nitrogen addition decreased microbial biomass C (MBC) and N (MBN), and MBC/TOC and MBN/TN in the 0–10 cm soil layer, but MBC/MBN was increased by 67% in the 0–10 cm soil layer. Soil basal respiration, microbial metabolic quotient (qCO2), and β-glucosidase, urease, acid phosphomonoesterase and nitrate reductase activities in the two soil layers showed little change after six years of N addition. However, soil protease and dehydrogenase activities in the 0–10 cm layer were 41% and 54% lower in the N addition treatment than in the control, respectively. Collectively, our results suggest that in the mid-term N addition leads to a decline in soil quality in larch plantations, and that different soil enzymes show differentiated responses to N addition.  相似文献   

8.
The objectives of this study were to investigate stomatal regulation in maize seedlings during progressive soil drying and to determine the impact of stomatal movement on photosynthetic activity. In well-watered and drought-stressed plants, leaf water potential (Ψ leaf), relative water content (RWC), stomatal conductance (g s), photosynthesis, chlorophyll fluorescence, leaf instantaneous water use efficiency (iWUEleaf), and abscisic acid (ABA) and zeatin-riboside (ZR) accumulation were measured. Results showed that g s decreased significantly with progressive drought and stomatal limitations were responsible for inhibiting photosynthesis in the initial stages of short-term drought. However, after 5 days of withholding water, non-stomatal limitations, such as damage to the PSII reaction center, became the main limiting factor. Stomatal behavior was correlated with changes in both hydraulic and chemical signals; however, changes in ABA and ZR occurred prior to any change in leaf water status. ABA in leaf and root tissue increased progressively during soil drying, and further analysis found that leaf ABA was negatively correlated with g s (R 2 = 0.907, p < 0.05). In contrast, leaf and root ZR decreased gradually. ZR in leaf tissue was positively correlated with g s (R 2 = 0.859, p < 0.05). These results indicate that ABA could induce stomatal closure, and ZR works antagonistically against ABA in stomatal behavior. In addition, the ABA/ZR ratio also had a strong correlation with g s, suggesting that the combined chemical signal (the interaction between ABA and cytokinin) plays a role in coordinating stomatal behavior. In addition, Ψ leaf and RWC decreased significantly after only 3 days of drought stress, also affecting stomatal behavior.  相似文献   

9.

Aims

Plant species can influence fire intensity and severity causing different immediate and long-term responses on the soil microbial community. The main objective of this work was to determine the role of two representative Mediterranean plant species as soil organic matter sources, and to identify their influence on microbial response before and after heat exposure.

Methods

A laboratory heating experiment (300 °C for 20 min) was performed using soil collected under Pinus hallepensis (PIN) and Quercus coccifera (KER). Dried plant material was added before heating for a total of six different treatments: non-heated control samples amended with the original plant material (PIN0 and KER0); PIN samples heated with pine (PINp) or kermes oak litter (PINk); KER samples heated with kermes oak (KERk) or pine litter (KERp). Heated soils were inoculated with the original fresh soil and different microbial parameters related to abundance, activity and possible changes in microbial community composition and chemical soil parameters that could be conditioning microbial response were measured for 28 days after inoculation.

Results

The effect of heating on the soil microbial parameters studied was influenced to a small extent by the plant species providing fuel, being evident in soil samples taken under pine influence. Nevertheless heating effect showed marked differences when plant species influence on soil origin was analyzed.

Conclusions

In general, samples taken under pine appear to be more negatively affected by heating treatment than samples collected under kermes oak, highlighting the importance of vegetation as a fresh organic matter source in soil ecosystems before and after fire.  相似文献   

10.
Elymus natans is a dominant native species widely planted to restore the heavily degraded alpine meadows in Qinghai-Tibetan plateau. The objective of this study was to determine how E. natans establishment affected the quality and fertility of a heavily degraded soil. Soil samples (at depths of 0–10, 10–20 and 20–30 cm) were collected from the 3- and 7-year-old E. natans re-vegetated grasslands, and in the heavily degraded alpine meadow (control). The establishment of E. natans promoted plant cover and aboveground biomass. Compared to the non-reseeded meadow, the concentration of total organic C increased by 13% in the soil under 3-year-old reseeded E. natans grassland at 0–10 cm, and by 7–33% in the soil under 7-year-old reseeded E. natans grassland at 0–10, 10–20 and 20–30 cm depths. Rapid increases in total and available N were also observed in two E. natans re-vegetated grasslands, especially in the 0–10 cm soil layer. Across three sampling depths, total P concentration was increased by 17–35% and 18–54% in 3- and 7-year-old reseeded soil respectively, compared to the soil of control. After 3 years of E. natans growth, microbial biomass C increased by 13–58% at 0–10 and 10–20 cm layers; while it increased by 43–87% in 7-year-old reseeded treatment at 0–10, 10–20 and 20–30 cm depths relative to control. A similar increasing trend was observed for microbial biomass N and P generally. Significant increase in neutral phosphatase, urease, catalase and dehydrogenase was also found in 3- and 7-year-old re-vegetated grasslands compared with heavily degraded meadow. Our results suggest a significant positive impact of E. natans establishment on soil quality. Thus, E. natans establishment could be an effective and applicable measure in restoring heavily degraded alpine meadow in the region of Qinghai-Tibetan Plateau.  相似文献   

11.
Using mass budget and hydrological models, we quantified the contribution of major diffuse nitrogen (N) sources to surface water loading in a large heterogeneous catchment (upper Vltava river, Czech Republic, about 13,000 km2) over the last 52 years. The catchment reflects the typical development in central and eastern European countries, which witnessed socio-economic shifts from a market to a planned economy in the 1950s and back to a market economy in the 1990s. The former shift was accompanied by increasing N inputs to agricultural and forest areas with ranges for the 1950–1980s of 60–160 and 14–30 kg ha?1 year?1, respectively, and with intensive draining of waterlogged farmland. The shift in the 1990s resulted in ~40 and ~50 % reduction of N inputs to agricultural areas and forests, respectively, and farmland draining ceased. The N exports from agricultural land (E AL ) and from forests (E FO ) varied within 3–45 and 1.6–7.1 kg ha?1 year?1, respectively (with maxima in the 1980s). The E AL and E FO fluxes exhibited several similar patterns, being dominated by NO3-N, increasing with N inputs, and having similar inter-annual variability related to hydrology. The N losses from forests were stable (19 % of N input on average), while those from agricultural land increased from ~10 % in the 1960s up to 32 % in the 2000s, due probably to the previous extensive drainage and tillage of waterlogged fields and pastures. These land use changes reduced the water residence time in agricultural land and induced mineralization of soil organic matter. Continuing mineralization of soil organic N pools thus was the most probable reason for the remaining high E AL fluxes despite a ~40 % reduction in N inputs to agricultural land, while the E FO fluxes decreased proportionally to the decreasing N deposition during 1990–2010.  相似文献   

12.
Patterns in soil moisture availability affect plant survival, growth and fecundity. Here we link patterns in soil moisture to physiological and demographic consequences in Florida scrub plants. We use data on different temporal scales to (1) determine critical soil moisture content that leads to loss of turgor in leaves during predawn measurements of leaf water status (Ψ crit), (2) describe the temporal patterns in the distribution of Ψ crit, (3) analyze the strength of relationship between rainfall and soil moisture content based on 8 years of data, (4) predict soil moisture content for 75 years of rainfall data, and (5) evaluate morphological, physiological and demographic consequences of spring 2006 drought on dominant shrubs in Florida scrub ecosystem in the light of water-uptake depth as determined by stable isotope analysis (δ18O). Based on 1998–2006 data, the soil moisture content at 50 cm depth explained significant variation in predawn leaf water potential of two dominant shrubs, Quercus chapmanii and Ceratiola ericoides (r 2?=?0.69). During 8 years of data collection, leaves attained Ψ crit only during the peak drought of 2000 when the soil moisture fell below 1% by volume at 50 and 90 cm depth. Precipitation explained a significant variation in soil moisture content (r 2?=?0.62). The patterns in predicted soil moisture for 75 year period, suggested that the frequency of drought occurrence has not increased in time. In spring 2006, the soil reached critical soil moisture levels, with consequences for plant growth and physiological responses. Overall, 24% of plants showed no drought-induced damage, 51% showed damage up to 50%, 21% had intense leaf shedding and 2% of all plants died. Over the drought and recovery period (May–October 2006), relative height growth was significantly lower in plants with greater die-back. All species showed a significant depression in stomatal conductance, while all but deep-rooted palms Sabal etonia and Serenoa repens showed significantly lower predawn (Ψ pd) and mid-day (Ψ md) leaf water potential in dry compared to wet season. Plants experiencing less severe die-back exhibited greater stomatal conductance, suggesting a strong relationship between physiology and morphology. Based on results we suggest that the restoration efforts in Florida scrub should consider the soil moisture requirements of key species.  相似文献   

13.
The activity concentrations of radionuclides in grape molasses soil samples collected from Zile (Tokat) plain in the Central Black Sea region of Turkey were measured by using gamma spectrometer with a NaI(Tl) detector. Also, the concentrations of 222Rn in soil samples and air were estimated essentially taking the activity concentrations of 226Ra measured in soil samples. Grape molasses soil samples with calcium carbonate content are used for sedimentation for making molasses in this region. The average activity concentrations of 232Th, 226Ra, 40K, and 137Cs were found as 62 ± 2, 68 ± 3, 479 ± 35, and 8.0 ± 0.3 Bq kg?1, respectively. The average concentrations of 222Rn in soil samples and air were estimated to be 50 kBq m?3 and 144 Bq m?3. From the activity concentrations, absorbed gamma dose rate in outdoor air (D), annual effective dose from external exposure (EE), annual effective dose from inhalation of radon (EI), and excess lifetime cancer risk (ELCR) were estimated in order to assess radiological risks. The average values of D, EE, EI, and ELCR were found to be 90 nGy h?1, 110 μSv y?1, 1360 μSv y?1, and 4 × 10?4, respectively.  相似文献   

14.
The physiological state of the leaves of the small-leaved linden (Tilia cordata), silver birch (Betula pendula), and northern white cedar (Thuja occidentalis) under urban conditions was assessed via recording the kinetics of chlorophyll under fluorescence induction. Different sensitivities of the plants to adverse growing conditions were revealed. The most sensitive parameters of the fluorescence JIP test, viz., PI ABS , F V/F 0, and F V/F M, were identified as indicators of the physiological state of the urban phytocoenosis. Recommendations for the application of the method for monitoring studies are presented.  相似文献   

15.
Early events in individual hepatocytes of rat activated by adrenaline (10?6M) and phenylephrine (10?5M) have been investigated by quantitative image microfluorometry and microspectrofluorometry. Cationic DiOC2 and anionic SqSC4 probes have been used for image analysis and transmembrane potential (ΔΨ p) estimation in real-time studies. Fluorescence spectra resulting from the accumulation of dyes in single cells were recorded. Based on the mean fluorescence intensity, the magnitude of ΔΨ p was calculated by Nernst equation adapted for lipophilic cationic probes. DiOC2 has revealed that both hormones induce biphasic hyperpolarization of hepatocytes membrane with α-agonist phenylephrine causing ΔΨ p changes at higher amplitude. The first increase of ΔΨ p within 2 and 5 min (ΔΔΨ p = ?8.6 ± 4.2 mV) apparently related to Na+/K+-ATPase activation by the Ca2+-mobilizing hormone. The second peak of hyperpolarization (ΔΔΨ p = ?13.2 ± 3.2 mV) between 25 and 30 min, after a transient decrease of ΔΨ p (ΔΔΨ p = 10.9 ± 4.3 mV) over 15 min experiment, probably is mediated by phenylephrine stimulating action on K+-channels. K+ channel blocker (Ba2+ or 4-aminopyridine) as well as elevating of extracellular K+ prevented the hyperpolarization. Modulation of PLD-dependent signal transduction pathway by 0.4 % butanol had a weak influence on the first increase of ΔΨ p but it abolished the second phase of hyperpolarization. That points to PLD involvement in the ΔΨ p fluctuations mediated by K+-channels in response to phenylephrine. Based on SqSC4, fluorescent parameters estimation of relative changes of ΔΨ p revealed similar character of time dependence with two phases of hyperpolarization. Synchronic fluctuation of ΔΨ p determined by oppositely charged probes demonstrate that the quantitative microfluorometry allows to evaluate slight ΔΨ p changes separately from ΔΨ m in non-excitable individual cells at the short-term hormone action.  相似文献   

16.
Judith Pump  Ralf Conrad 《Plant and Soil》2014,384(1-2):213-229

Aims

Rice fields are an important source for the greenhouse gas methane. Plants play an essential role in carbon supply for soil microbiota, but the influence of the microbial community on carbon cycling is not well understood.

Methods

Microcosms were prepared using sand-vermiculite amended with different soils and sediments, and planted with rice. The microcosms at different growth stages were pulse-labeled with 13CO2 followed by tracing 13C in plant, soil and atmospheric carbon pools and quantifying the abundance of methanogenic archaea in rhizosphere soil.

Results

Overall,?>85 % of the freshly assimilated carbon was allocated in aboveground plant biomass, approximately 10 % was translocated into the roots and?4, but emission of 13C-labeled CH4 started immediately and 13C enrichment revealed that plant-derived carbon was an important source for methanogenesis. The results further demonstrated that carbon assimilation and translocation processes, microbial abundance and gas emission were not only affected by the plant growth stage, but also by the content and type of soil in which the rice plants grew.

Conclusions

The study illustrates the close ties between plant physiology, soil properties and microbial communities for carbon turnover and ecosystem functioning.  相似文献   

17.
We compared soil moisture content, pH, total organic carbon (C org), total nitrogen (TN), total phosphorus (TP) and inorganic N (NH4 +–N, NO3 ?–N) concentrations, soil potential C and N mineralization rates, soil microbial biomass C (C mic), soil metabolic quotient (qCO2), soil microbial quotient (C mic/C org) and soil enzyme (urease and invertase) activities in semiarid sandy soils under three types of land cover: grassland, Mongolian pine (Pinus sylvestris var. mongolica) plantation, and elm (Ulmus punila)–grass savanna in southeastern Keerqin, in northeast China. Soil C org, TN and TP concentrations (0–10, 10–20, 20–40 and 40–60 cm) were lower while soil C/N and C/P ratios were higher in the plantation than in grassland and savanna. The effects of land cover change on NH4 +–N and NO3 ?–N concentrations, soil potential nitrification and C mineralization rates in the surface soil (0–10 cm) were dependent on sampling season; but soil potential N mineralization rates were not affected by land cover type and sampling season. The effects of land cover change on C mic and qCO2 of surface soil were not significant; but C mic/C org were significantly affected by land cover change and sampling season. We also found that land cover change, sampling season and land cover type?×?sampling season interaction significantly influenced soil enzyme (urease and invertase) activities. Usually soil enzyme activities were lower in the pine plantations than in grassland and savanna. Our results suggest that land cover change markedly influenced soil chemical and biological properties in sandy soils in the semiarid region, and these effects vary with sampling season.  相似文献   

18.
The effect of silicon (Si) nutrition on low-level cadmium (Cd) toxicity symptoms was investigated in hydroponically-grown rice seedlings (Oryza sativa L.). Silicon (0.0, 0.2, or 0.6 mM) was added when seedlings were 6 or 20 days old representing early (SiE) or late (SiL) Si treatment, respectively. Cadmium (0.0 or 2.5 μM) was added when seedlings were 6 days old. Measurements included generation of CO2 and light response curves; chlorophyll fluorescence analysis; growth; and tissue-element content analysis. Our results showed that low-level Cd treatment generally inhibited growth and photosynthesis. However, the addition of 0.2 or 0.6 mM SiE or SiL significantly reduced root- and leaf-Cd content. Consequently, the addition of 0.6 mM SiL significantly alleviated low-level Cd-induced inhibition of growth. Furthermore, 0.2 mM Si treatment significantly reduced g s compared to 0.0 or 0.6 mM Si without inhibiting A, especially in +Cd plants, suggesting an increase in instantaneous water-use-efficiency (IWUE). Additionally, in +Cd plants, the addition of 0.6 mM SiE significantly reduced F o but increased F v/F m, while treatment with 0.2 mM SiL significantly increased qP, suggesting an increase in light-use-efficiency. We thus, propose that 0.6 mM SiL treatment is required for the alleviation of low-level Cd-mediated growth inhibition. Furthermore, we suggest that 0.2 mM Si concentration might be close to the optimum requirement for maximum Si-induced increase in IWUE in rice plants, especially when under low-level Cd-stress. Our results also suggest that Si alleviates low-level Cd toxicity by improving light-use-efficiency.  相似文献   

19.
The aim of the present work was to explore physiological changes provoked by somaclonal variation in response to salinity. Two parental cultivars (La Candelaria and Yerua) and their derived somaclones were used as a source for breeding new rice lines with improved salt tolerance. We studied the effect of NaCl salt stress on chlorophyll fluorescence-related parameters, such as the maximum quantum yield of primary PSII photochemistry (F v/F m) and the performance index for energy conservation from photon absorbed by PSII antenna (PIABS). In addition malondialdehyde (MDA) content and leaf temperature (LT) responses were also measured. In somaclonal lines, F v/F m, PIABS, MDA and LT showed coefficients of variation of 13.7, 39.3, 25.5, and 3 %, respectively, for La Candelaria and 1.4, 17.6, 34.4 and 3 % for Yerua. However, the fragrant character did not differ in the aromatic somaclonal lines with respect to their parentals. Our results suggest that the F v/F m ratio would not be as good marker of PSII vitality as PIABS for salinized rice somaclones, unless they are highly susceptible to salinity. On other hand, the MDA content showed a strong negative correlation with the PIABS content in somaclones of both rice cultivars, suggesting that MDA levels could also be used as an oxidative damage index in rice somaclones.  相似文献   

20.
The soils impacted by sea animal excreta are important sources of nutrients in Antarctic terrestrial ecosystems, and soil microorganisms are the principal drivers of carbon and nitrogen cycling. However, microbial diversity and enzyme activities in these soils have still received little attention. In this paper, we investigated the distribution characteristics of bacterial community in four penguin and seal colony soil profiles collected in East Antarctica, using 16S rDNA-DGGE and real-time quantitative PCR. Soil microbial biomass carbon (Cmic), soil respiration (SR), and enzyme activities involved in carbon, nitrogen, and phosphorus metabolisms were also measured. Overall soil Cmic, SR, enzyme activities, and bacterial abundance decreased with depth. The bacterial abundance had a significant correlation with soil organic carbon and total nitrogen and highly corresponded to the relative content of penguin guano or seal excreta in these soil profiles. The 16S rDNA-DGGE revealed the complicated bacterial community structure in penguin and seal colony soils, and the band richness and dominant bands decreased with soil depth. Cluster analysis of DGGE profiles indicated that bacterial community in those soil profiles were divided into four main categories with the bacterial genetic similarity of 22 %, and the majority of the sequenced bands were Proteobacteria (α, β, γ), Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Chloroflexi, and Firmicutes. Our results indicated that the deposition of penguin guano or seal excreta, which caused the variability in soil soil organic carbon, total nitrogen, pH, and soil moisture, might have an important effect on the vertical distribution pattern of bacterial abundance and diversity in Antarctic soil profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号