首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A series of substitution lines of variety ‘Timstein’ (Tim) into genetic background of Chinese Spring (CS) were used in this study. Analysis of variance indicated that significant differences exist among the substitution lines for all the traits under study except stomatal width (SW) in the water-stressed condition and stomatal length, and photosynthesis rate (PR) in the well-watered experiment. Correlation analysis indicated that PR and stomatal conductance (SC) were most important in affecting yield under the both experiments. Chromosomal analysis indicated that grain weight was affected by many chromosomes as it was expected due to its complexity under both well-watered and water-stressed conditions. In well-watered experiment, no substitution line was significantly different from recipient variety for PR. Despite results in well-watered experiment, chromosomes 3A, 3B, 4B, and 3D from variety Timestin increased PR when substituted into variety CS under the water-stressed experiment. In well-watered experiment, chromosome 7D of variety Timetin had the main effect on increasing SC, and chromosome 1A had a diverse effect on this character when substituted into recipient variety. However chromosomes 3A, 3B, 4B, and 1D of Timestin increased SC under water-stressed conditions. It was also revealed that in general the chromosomes expressed their independent effects on the characters regardless of environment. Nonetheless, some chromosomes indicated similar effects under the two conditions. Among them, chromosome 1A of Timestin reduced yield, chromosomes 2B, 7B, and 5D increased the amount of grain yield, and chromosome 1D increased SC under both conditions.  相似文献   

2.
The effects of CO2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM. It was noticed that exomorphology did not show dramatic change, while stomatal density decreased with increasing CO2 concentration. Under SEM, no epicuticular wax was observed on both abaxial and adaxial sides of the control group as well as on adaxial side of the treatment group. However, leaf surface of abaxial side was noticed to be densely covered with microasterisk epicuticular wax when they were exposed to CO2-enriched environment. The epicuticular wax deposition was present in equal abundance on both stomatal and nonstomatal areas. Furthermore, leaf thickness increased significantly due largely to the origin of an extra layer of palisade in the treatment group. The results confirmed that CO2 enrichment might enhance cell division and induce greater quantity of epicuticular wax.  相似文献   

3.
Epicuticular Wax and Cuticular Resistance in Rice   总被引:7,自引:0,他引:7  
High leaf cuticular resistance has been reported as a component adaptation of plants to drought prone regions, Experiments were conducted to evaluate and characterize the role of epicuticular wax as a component of cuticular resistance to water vapor loss from rice (Oryza sativa L.) leaves. This information is necessary to determine the applicability of including higher cuticular resistance in an upland rice breeding program and to evaluate potential selection methods. Diffusion porometry, electron microscopy, and gas liquid chromatography were employed. Measurement of cuticular resistance by leaf diffusive resistance porometry after stomatal closure by exposure of rice leaves to pure CO2 for 15 min was found sufficient to induce complete stomatal closure regardless of light level, and was superior to dark acclimation for this purpose. Removal of epicuticular wax from rice leaves by chloroform dip significantly reduced the cuticular resistance. Stressed plants were observed to increase cuticular resistance, illustrating the responsive nature of this characteristic. Gas liquid chromatography (GLC) of the chloroform leaf dip proved to be an expedient method of characterizing both quantitative and qualitative differences in the epicuticular wax of rice cullivars. The porometry and GLC techniques may be useful in selecting parents, spot checking in a pedigree program, or checking lines reaching the yield testing stage, but ate not well suited lor mass screening early generation progeny. Significant differences were found in the two rice cultivurs, ‘63–83′, an upland adapted rice from West Africa, and “IR20′, bred and selected in submerged paddy culture in ihc Philippines, by tlie above methods of characterizing cuticular resistance and epicuticular wax. These results are of ecological significance to plant breeders.  相似文献   

4.
《Acta Oecologica》2007,31(1):93-101
This study investigated the seasonal modification of wax deposition, and the impact of epicuticular wax on gas-exchange as well as photoinhibition in Leucadendron lanigerum, a species from the Proteaceae family with wax-covered leaf surfaces and the stomata also partially occluded by wax. The results of this study demonstrated that the deposition of epicuticular wax in L. lanigerum is dependent on the age of the leaf as well as the season, and generation and regeneration of wax occur mostly in spring while transformation and also degeneration of wax crystals occur in winter. Epicuticular waxes decreased cuticular water loss, but had little impact on leaf reflectance. The temperature of leaves without wax was lower than that of wax-covered leaves, indicating that the rate of transpiration impacted more on leaf temperature than reflectance of light in the PAR range in L. lanigerum. The wax coverage at the entrance of stomata in L. lanigerum increased resistance to gas diffusion and as a consequence decreased stomatal conductance, transpiration and photosynthesis. Also, the results indicated that epicuticular waxes do help prevent photodamage in L. lanigerum, and so this property could benefit plants living in arid environments with high solar radiation.  相似文献   

5.
Zhou WC  Kolb FL  Bai GH  Domier LL  Yao JB 《Hereditas》2002,137(2):81-89
Two sets of substitution lines were developed by crossing individual monosomic lines of Chinese Spring (recipient) with scab (Fusarium graminearum) resistant cultivar Sumai 3 (donor) and then using the monosomics as the recurrent male parent for four backcrosses (without selfing after each backcross). The disomic substitution lines were separated from selfed BC4F2 plants. Chromosome specific SSR markers were analyzed for polymorphism between Sumai 3 and Chinese Spring. Polymorphic markers were used to identify substitution lines for specific chromosomes. Based on the specific SSR markers, chromosome substitutions occurred in thirty-six lines, and six lines segregated alleles from the two parents or were homozygous for the allele from Chinese Spring. These substitution lines were used to evaluate Type II (spread within the head) and Type V (deoxynivalenol accumulation within kernels) scab resistance. The objective was to use the substitution lines to evaluate the effect of individual chromosomes of Sumai 3 on Type 11 and Type V scab resistance in the greenhouse. Significant differences in Type II scab resistance and deoxynivalenol (DON) levels among different Chinese Spring (Sumai 3) substitution lines were detected. Positive chromosome substitution effects on Type II scab resistance were found on chromosomes 2B, 3B. 6B, and 7A from Sumai 3. Chromosomes 3B and 7A also reduced DON accumulation within the kernels, while chromosomes IB, 2D, and 4D from Sumai 3 increased DON concentration. Chromosome 7A from Sumai 3 had the largest effect on resistance to scab spread and DON accumulation. Additional research is in progress on the scab resistance conferred by chromosome 7A.  相似文献   

6.
Abstract. Epidermal (non-stomatally-controlled) conductance from the fourth leaf, first node leaf, flag leaf and ear of durum wheat (Triticum turgidum var durum L.) grown under Mediterranean field conditions has been measured, along with leaf stomatal frequency and the amount and distribution of epicuticular waxes. Measurements were carried out on varieties and land-races from the Middle East, North Africa, ‘Institut National de la Recherche Agricole’ (INRA) and ‘Centra Internacional de Mejora de Maiz y Trigo’ (CIMMYT). Significant differences were observed among genotypes in the epidermal conductances (ge) of the four organs. For each of the four organs tested, genotypes from the Middle East and CIMMYT showed higher ge. values than those from North Africa and INRA. Ears showed epidermal conductances that were more than four times higher than those of leaves when ge. values were expressed per unit dry weight. The amount of epicuticular waxes was higher in the fourth leaves, intermediate in the first node and flag leaves and lower in the ears. For each organ, ge differences among genotypes were unrelated with the amount of epicuticular waxes. Removal of epicuticular waxes by dipping the organs into chloroform significantly increased the epidermal conductance for the fourth and first node leaves and the ear. However, this did not occur for the flag leaf. For the fourth leaf, ge of intact leaves and ge of leaves in which epicuticular waxes were removed were unrelated (r = -0.265). The regression coefficient of this relation for the first node and flag leaves showed values of 0.666 and 0.650 (P > 0.05), respectively, and values were even higher in the ear (r > m 0.892, P > 0.01). Scanning electron microscope analysis showed that wax bloom decreased from the fourth leaf to the flag leaf, whereas the extent of amorphous wax increased. Wax bloom in leaves consisted mainly of deposits of thin wax plates. In the ears and the adaxial surface of flag leaves, fibrillar waxes predominated. In the first node and flag leaves, the wax deposits on the adaxial side cover the surface of the leaf more densely and uniformly than those on the abaxial side. There was no significant correlation between ge and total stomatal density, or between ge and either adaxial or abaxial stomatal density for any sample of the three different leaves. The contribution of epicuticular waxes plus total stomatal frequency only explained 42.4, 11.8, 28.3 and 16% of ge (per unit leaf area) variations for the fourth leaf, first node leaf, flag leaf and the combined variation of the three leaves together, respectively. From these results, it is concluded that complex interrelationship between different morphophysiological characteristics probably control ge differences among genotypes and that these interrelationships differ for each different plant part.  相似文献   

7.
Genetic regulation of grain hardness and protein content in intervarietal substitution lines for chromosomes of homeologous group 5 was examined. Common wheat cultivar Saratovskaya 29 with high bread-backing properties served as the recipient. Donors of chromosomes 5A and 5D were 18 cultivars with variable traits examined, including high-protein cultivars (Atlas 66 and Diamant 2), and soft-grain cultivars (Ul’yanovka and Chinese Spring). Analysis of substitution lines pointed to a substantial effect of chromosome 5D on the regulation of both traits. It was demonstrated that as a result of intervarietal substitution for chromosome 5D from donor cultivars Ul’yanovka and Chinese Spring, the endosperm softness was increased compared to the recipient cultivar Saratovskaya 29. Substitution lines Saratovskaya 29/Atlas 66 5D and Saratovskaya 29/Diamant 2 5D were characterized by high grain protein content, as well as by high endosperm hardness. In addition, the line Saratovskaya 29/Novosibirskaya 67 5D, characterized by grain hardness higher than in Saratovskaya 29, was isolated. In the lines with intervarietal substitution of chromosome 5A, grain protein content was found to be lower than in recipient cultivar Saratovskaya 29.  相似文献   

8.

Key message

A new epicuticular wax (bloom) locus has been identified and fine mapped to the 207.89 kb genomic region on chromosome 1. A putative candidate gene, Sobic.001G269200, annotated as GDSL-like lipase/acylhydrolase, is proposed as the most probable candidate gene involved in bloom synthesis/deposition.

Abstract

Deposition of epicuticular wax on plant aerial surface is one strategy that plants adapt to reduce non-transpiration water loss. Epicuticular wax (bloom)-less mutants in sorghum with their glossy phenotypes exhibit changes in the accumulation of epicuticular wax on leaf and culm surfaces. We report molecular mapping of a new sorghum locus, bloomless mutant (bm39), involved in epicuticular wax biosynthesis in sorghum. Inheritance studies involving a profusely bloom parent (BTx623) and a spontaneous bloomless mutant (RS647) indicated that the parents differed in a single gene for bloom synthesis. Bloomless was recessive to bloom deposition. Genetic mapping involving F2 and F7 mapping populations in diverse genetic backgrounds (BTx623 × RS647; 296A × RS647 and 27A × RS647) identified and validated the map location of bm39 to a region of 207.89 kb on chromosome 1. SSR markers, Sblm13 and Sblm16, flanked the bm39 locus to a map interval of 0.3 cM on either side. Nine candidate genes were identified, of which Sobic.001G269200 annotated for GDSL-like lipase/acylhydrolase is the most likely gene associated with epicuticular wax deposition. Gene expression analysis in parents, isogenic lines and sets of near isogenic lines also confirmed the reduced expression of the putative candidate gene. The study opens possibilities for a detailed molecular analysis of the gene, its role in epicuticular wax synthesis and deposition, and may help to understand its function in moisture stress tolerance and insect and pathogen resistance in sorghum.
  相似文献   

9.
By using alpha-amylase isozymes as markers for chromosomes of homoeologous groups 6 and 7, we analyzed the segregation of chromosome constitution in the progenies from crosses between double-ditelosomic or ditelosomic lines of hexaploid wheat cultivar 'Chinese Spring' (CS) as the female parent and double-monosomic F1 hybrids of CS x wheat-barley substitution lines for barley chromosomes 6H or 7H. From this analysis we estimated the transmission rate via pollen of barley chromosomes 6H and 7H in the double-monosomics and evaluated the compensating ability between barley and wheat chromosomes in homoeologous groups 6 and 7. The results indicated that both 6H and 7H showed their highest compensating ability for their respective homoeologous wheat chromosomes 6A (37.5% transmission rate) and 7A (39.4%), intermediate for 6D (34.1%) and 7D (29.6%), and lowest for 6B (26.6%) and 7B (22.6%) chromosomes.  相似文献   

10.
Heterochromatin distribution and structural differentiation of somatic chromosomes of five common wheat cultivars — Chinese Spring, Wichita, Cheyenne, Timstein, and Hope — were studied by an acetocarmine/N-banding technique. Detailed morphological observations on acetocarmine stained somatic chromosomes of Chinese Spring were made on all A genome chromosomes (except 1A), all B genome chromosomes, and chromosomes 1D, 2D, and 7D. N-banding patterns of chromosomes 2A, 3A, 5A, 6A, 1D, 2D, and 7D were described for the first time. Substitution lines of 21 individual chromosomes each of Cheyenne, Timstein, and Hope in Chinese Spring were analyzed by N-banding. A high frequency of N-band polymorphism was observed, especially for most of the B genome chromosomes. Chromosomes 3A, 5A, 2D, and 7D showed a constant banding pattern. Three cases of doubtful substitutions, Hope 2A, 2B, and Timstein 7A, and several cases of incomplete and chromosomally modified substitutions were observed. The reduced level of chromosome pairing that is often observed in intercultivar hybrids of wheat may be due to heterochromatic differentiation, genic and structural heterozygosity, or hybrid dysgenesis.  相似文献   

11.
以轮回亲本籼稻品种9311(Oryz a sativa ssp. indica ‘Yangdao 6’)为对照, 选用132个亲本间有多态性的SSR标记, 对以粳稻品种日本晴(Oryz a sativa ssp. japonica 'Nipponbare’)为供体的5个高代回交置换系的农艺性状及置换片段进行分析。5个置换系在粒长、粒宽、千粒重、剑叶长、株高及落粒性等方面与籼稻品种9311之间有极显著差异, 其余性状与籼稻品种9311间的差异不显著; 从置换系中检测出8个置换片段, 总长度为236.0 cM, 平均长度为29.5 cM; 从置换片段上检出包括2个千粒重、1个粒长、1个粒宽、1个剑叶长、1个株高和1个落粒性共7个QTLs , 分别分布在水稻第1、3、5、6和第10染色体上。其中, 第1染色体上控制剑叶长的QTL和第6染色体上控制株高的QTL可能是新发现的QTLs。实验结果进一步丰富了置换系群体的数量和质量, 也为QTLs 的精细定位及分子设计育种奠定了基础。  相似文献   

12.
The peel of the plantain and cooking banana fruit protects the edible pulp from the surrounding environment. The peel of those cultivars examined contained 85–90% water and between 28 and 60 mg dry weight cm-2 surface area. The ratio of fruit pulp to peel fresh weights differed between cultivars (1.18-2.28). The surface area of the fruit can be determined from the fresh weight using regression equations for individual cultivars or for all cultivars combined. The stomatal density was generally higher at the fruit tips than at the mid region. Significant differences in stomatal length and density were identified between cultivars although no trends existed between plantains and cooking bananas. There was little difference in the quantity of epicuticular wax on plantains whereas there were differing amounts on cooking bananas. Differences in wax composition between cultivars and for wax extracted with hot or cold chloroform were identified. Removal of the epicuticular wax with chloroform accelerated the rate of weight loss. The use of hot chloroform increased both the amount of wax removed and also the rate of weight loss. The effect of removing the epicuticular wax on water loss is discussed and illustrated with scanning electron micrographs.  相似文献   

13.
大豆叶片结构对CO_2浓度升高的反应(英)   总被引:3,自引:0,他引:3  
应用光学显微镜和扫描电镜研究了CO2 浓度对大豆(Glycine m ax)叶片形态和解剖特征的影响。结果表明,叶片外部形态没有显著变化,而叶片气孔密度随CO2 浓度升高呈下降趋势。对照组叶片上下表面和处理组的上表面均无表面角质蜡层,而处理组的下表面覆盖有大量星状的表面角质蜡层,它们在气孔区和非气孔区的数量基本差不多。此外,还发现叶肉中增加了一层栅栏组织,从而使叶片明显增厚。结果证实,CO2 浓度增加将促进细胞分裂和表面角质蜡层的产生  相似文献   

14.
5个籼稻背景的高代回交置换系的置换片段分析   总被引:1,自引:0,他引:1  
以轮回亲本籼稻品种9311(Oryza sativassp.indica‘Yangdao6’)为对照,选用132个亲本间有多态性的SSR标记,对以粳稻品种日本晴(Oryzasativassp.japonica‘Nipponbare’)为供体的5个高代回交置换系的农艺性状及置换片段进行分析。5个置换系在粒长、粒宽、千粒重、剑叶长、株高及落粒性等方面与籼稻品种9311之间有极显著差异,其余性状与籼稻品种9311间的差异不显著;从置换系中检测出8个置换片段,总长度为236.0cM,平均长度为29.5cM;从置换片段上检出包括2个千粒重、1个粒长、1个粒宽、1个剑叶长、1个株高和1个落粒性共7个QTLs,分别分布在水稻第1、3、5、6和第10染色体上。其中,第1染色体上控制剑叶长的QTL和第6染色体上控制株高的QTL可能是新发现的QTLs。实验结果进一步丰富了置换系群体的数量和质量,也为QTLs的精细定位及分子设计育种奠定了基础。  相似文献   

15.
植物基因组研究与利用的新型工具——异源单体附加系   总被引:2,自引:0,他引:2  
谭光轩 《遗传》2008,30(1):35-45
在高等植物中, 以种间杂交和回交把有益基因从一个物种转移到另一个物种为目的育种项目中, 单个外源染色体常常被附加到含有受体细胞完整一套染色体中, 形成异源单体附加系。这种异源单体附加系是阐明基因组结构和转移基因的有效工具。它可以通过回交形成覆盖整个基因组的渗入系重叠群, 用于建立以受体物种基因组为载体的外源物种基因组文库。另外, 一套完整的异源单体附加系也可看作是一个拥有分散供体基因组成为单个染色体单位的文库, 便于精确高通量地将标记分配到单个供体染色体上, 从而可以比较供体染色体和各自的直向同源受体染色体之间的标记位置和同线性关系。同时, 也便于研究同源染色体的渗入机制和配对状态。文中介绍了异源单体附加系的培育和特性, 并着重阐明了它在遗传育种和基础研究中的应用。  相似文献   

16.
Understanding of the genetic basis of physiological properties, which are most relevant to water-deficit tolerance would be helpful for genomic-assisted improvement of bread wheat. A set of bread wheat inter-varietal single chromosome substitution lines (ISCSLs) of variety ‘Janetzkis Probat’ (JP) in the genetic background of ‘Saratovskaya’ 29 (S29) were used to reveal the critical chromosomes in wheat genome controlling tolerance to water deficit. The same lines were involved in the identification of chromosomes associated with the activity of antioxidant enzymes that are closely related to the detoxification of H2O2 [catalase (CAT), ascorbate peroxidase, dehydroascorbate reductase and glutathione reductase (GR)]. The recipient cultivar S29 was highly drought tolerant while the donor JP was sensitive. Using non-metric multidimensional scaling of yield components and indices of drought tolerance/susceptibility chromosomes 2A and 4D, substitution in the genetic background of S29 was found to lead to a critical decrease of water-deficit tolerance. The drop of tolerance correlated with a sharp decline of cumulative activity of the catalase and the enzymes of ascorbate–glutathione cycle in wheat leaves. Clear evidence was obtained for the involvement of genes present on the homoeologous group 2 chromosomes in the control of GR and CAT activity. Substitution of the chromosome 4D had a significant reducing impact on the CAT activity level.  相似文献   

17.
Drought stress is the major constraint to rice (Oryza sativa L.) production and yield stability in rainfed ecosystems. Identifying genomic regions contributing to drought resistance will help to develop rice cultivars suitable for rainfed regions through marker-assisted breeding. Quantitative trait loci (QTLs) linked to leaf epicuticular wax, physio-morphological and plant production traits under water stress and irrigated conditions were mapped in a doubled haploid (DH) line population from the cross CT9993-5-10-1-M/IR62266-42-6-2. The DH lines were subjected to water stress during anthesis. The DH lines showed significant variation for epicuticular wax (EW), physio-morphological and plant production traits under stress and irrigated conditions. A total of 19 QTLs were identified for the various traits under drought stress and irrigated conditions in the field, which individually explained 9.6%–65.6% of the phenotypic variation. A region EM15_10-ME8_4-R1394A-G2132 on chromosome 8 was identified for leaf EW and rate of water loss i.e., time taken to reach 70% RWC from excised leaves in rice lines subjected to drought stress. A large effect QTL (65.6%) was detected on chromosome 2 for harvest index under stress. QTLs identified for EW, rate of water loss from excised leaves and harvest index under stress in this study co-located with QTLs linked to shoot and root-related drought resistance traits in these rice lines and might be useful for rainfed rice improvement.  相似文献   

18.
A number of morphological, physiological and phenological traits have been suggested as significant markers of adaptation to drought in bread wheat (Triticum aestivum L.). This study was aimed at the identification of a relationship between dehydroascorbate reductase (DHAR, EC 1.8.5.1) and catalase (CAT, EC 1.11.1.6) activities in leaves of wheat plants and stability of yield components under water deficit. The single chromosome substitution lines of cv. Chinese Spring carrying separate chromosomes from the donor Synthetic 6x, an artificial hexaploid combining the genomes of the two wild species, Triticum dicoccoides (AABB) and Aegilops tauschii (DD), were the objects of the investigations. The activities of the DHAR and CAT were correlated with flag leaf relative water content and two indexes of stability of grain yield components under drought across the set substitution lines. The lines carrying a synthetic hexaploid homologous pair of chromosomes 1B, 1D, 2D, 3D or 4D all expressed a low constitutive level of DHAR and the lines carrying chromosomes 3B, 1D, 2D and 3D a low constitutive level of CAT. All were able to increase this level (by fourfold for DHAR and by 1.5-fold for CAT) in response to stress caused by water deficit. When challenged by drought stress, these lines tended to be the most effective in retaining the water status of the leaves and preventing the grain yield components from being compromised. The discovered genetic variability for enzymes activity in leaves of wheat might be a useful selection criterion for drought tolerance.  相似文献   

19.
When using chromosome substitution (CS) lines in a crop breeding improvement program, one needs to separate the effects of the substituted chromosome from the remaining chromosomes. This cannot be done with the traditional additive-dominance (AD) model where CS lines, recurrent parent, and their hybrids are used. In this study, we develop a new genetic model and software, called a modified AD model with genotype × environment interactions, which can predict additive and dominance genetic effects attributed to a substituted alien chromosome in a CS line as well as the overall genetic effects of the non-substituted chromosomes. In addition, this model will predict the additive and dominance effects of the same chromosome of interest (i.e. chromosome 25 of cotton in this study) in an inbred line, as well as the effects of the remaining chromosomes in the inbred line. The model requires a CS line, its recurrent parent and their F1 and/or F2 hybrids between the substitution lines and several inbred lines. Monte Carlo simulation results showed that genetic variance components were estimated with no or slight bias when we considered this modified AD model as random. The correlation coefficient between predicted effects and true effects due to the chromosomes of interest varied from zero to greater than 0.90 and it was positively relative to the difference between the CS line and the recurrent line. To illustrate the use of this new genetic model, an upland cotton, Gossypium hirsusum L, CS line (CS-B25), TM-1 (the recurrent parent), five elite cultivars, and the F2 hybrids from test-crossing these two lines with the five elite cultivars were grown in two environments in Mississippi. Agronomic and fiber data were collected and analyzed. The results showed that the CS line, CS-B25, which has chromosome 25 from line 3 to 79, Gossypium barbadense substituted into TM-1, had positive genetic associations with several fiber traits. We also determined that Chromosome 25 from FiberMax 966 had significantly positive associations with fiber length and strength; whereas, chromosome 25 from TM-1 and SureGrow 747 had detectable negative genetic effects on fiber strength. The new model will be useful to determine effects of the chromosomes of interest in various inbred lines in any diploid or amphidiploid crop for which CS lines are available.  相似文献   

20.
Summary Scanning electron microscopy, light microscopy, and gravimetric analysis was used to evaluate stomatal function, epicuticular wax, and the stem-root transition region of grape (Vitis sp. ‘Valiant’) plantlets grownin vitro, polyethylene glycoltreatedin vitro, and greenhouse-grown plants. Scanning electron microscopic studies of leaf surfaces ofin vitro-grown plants showed widely open stomata as compared to leaf stomata of polyethylene glycol-treatedin vitro-cultured and greenhouse-grown plants. Ultrastructurally, leaf epicuticular wax ofin vitro plants was less dense than in their polyethylene-treated and greenhouse counterparts. Quantitatively,in vitro-grown plants had reduced epicuticular was as compared to polyethylene glycol-treated and greenhouse-grown plants. Light microscopic studies showed no obvious differences in the vascular connections in the stem-root transition region ofin vitro-cultured, polyethylene glycol-treatedin vitro-cultured, and greenhouse-grown plants. It is therefore likely that the rapid wilting and desiccation observed after transplantingin vitro grape plantlets is due to their defective stomatal function and reduced epicuticular wax and may not be due to poor water transport associated with vascular connection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号