首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Neuronal plasticity allows an animal to respond to environmental changes by modulating its response to stimuli. In the honey bee (Apis mellifera), the biogenic amine octopamine plays a crucial role in appetitive odor learning, but little is known about how octopamine affects the brain. We investigated its effect in the antennal lobe, the first olfactory center in the brain, using calcium imaging to record background activity and odor responses before and after octopamine application. We show that octopamine increases background activity in olfactory output neurons, while reducing average calcium levels. Odor responses were modulated both upwards and downwards, with more odor response increases in glomeruli with negative or weak odor responses. Importantly, the octopamine effect was variable across glomeruli, odorants, odorant concentrations and animals, suggesting that the octopaminergic network is shaped by plasticity depending on an individual animal’s history and possibly other factors. Using RNA interference, we show that the octopamine receptor AmOA1 (homolog of the Drosophila OAMB receptor) is involved in the octopamine effect. We propose a network model in which octopamine receptors are plastic in their density and located on a subpopulation of inhibitory neurons in a disinhibitory pathway. This would improve odor-coding of behaviorally relevant, previously experienced odors.  相似文献   

2.
The modulatory actions of the biogenic amine octopamine on the femur tibia (FT) control loop in the stick insect Carausius morosus were examined. The response properties of the FT control loop were determined under open loop conditions. Mechanical stimulation of the femoral chordotonal organ (fCO) was the input and tibial movement and motoneuronal activity were measured as the output of the system. Following octopamine injection into the hemolymph of intact, inactive animals, two consecutive phases occurred at the behavioral level. Octopamine caused initially an activation of the animal. During this first phase (3.5–12 min duration) the response properties of the FT control loop were similar to those found in animals that were activated by tactile stimuli under normal conditions. Afterward, animals became inactive. During this second phase (15–20 min duration), the gain of the control loop was zero and no resistance reflex in the FT joint was generated in response to fCO stimulation. However, active movements of the tibia could still be elicited. As we could show in restrained animals, where dl-octopamine was applied topically onto the undesheated mesothoracic ganglion, the complete suppression of the resistance reflex on the motoneuronal level was dose dependent starting at concentrations of 5 ± 10?3 M octopamine. We could show that octopamine specifically suppressed the pathways involved in the resistance reflex, while feedback loop responses to fCO stimuli typical for active animals could still be elicited. Our results indicate that an increase in the octopamine concentration mimicks activation of the animal: Properties being characteristic for the control of the FT joint in the inactive animal are inhibited by octopamine, while properties of the FT control loop typical for the active animal appear to be facilitated following octopamine injection. The results clearly demonstrate that different pathways in the neuronal network underlying the FT control loop are involved in the responses of the control loop to fCO stimuli in the inactive and active behavioral states of the stick insect. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
1. Effect of 72 ring or α-substituted phenylethanolamines (SPEAs) was examined on the adenylate cyclase prepared from ventral nerve cords of the American cockroach Periplaneta americana.2. Para-Cl-SPEA was the most effective octopaminergic agonist, followed by p-Br-, p-F-, p-Me-, p-NO2- and p-CF3-SPEA.3. Meta- and o-SPEAs were less active than p-SPEAs, in stimulating adenylate cyclase.4. SPEA analogs interact with the same binding site as octopamine in the nerve cords of American cockroach, since the level of evoked cAMP production by a combination of optimally effective concentrations of octopamine and SPEA was not greater than the stimulation by octopamine alone.5. Washing removed nearly all of the stimulatory activity of SPEA, suggesting that SPEA binds reversibly to the octopaminergic receptor.  相似文献   

4.
Insect thoracic ganglia contain efferent octopaminergic unpaired median neurons (UM neurons) located in the midline, projecting bilaterally and modulating neuromuscular transmission, muscle contraction kinetics, sensory sensitivity and muscle metabolism. In locusts, these neurons are located dorsally or ventrally (DUM- or VUM-neurons) and divided into functionally different sub-populations activated during different motor tasks. This study addresses the responsiveness of locust thoracic DUM neurons to various sensory stimuli. Two classes of sense organs, cuticular exteroreceptor mechanosensilla (tactile hairs and campaniform sensilla), and photoreceptors (compound eyes and ocelli) elicited excitatory reflex responses. Chordotonal organ joint receptors caused no responses. The tympanal organ (Müller's organ) elicited weak excitatory responses most likely via generally increased network activity due to increased arousal. Vibratory stimuli to the hind leg subgenual organ never elicited responses. Whereas DUM neurons innervating wing muscles are not very responsive to sensory stimulation, those innervating leg and other muscles are very responsive to stimulation of exteroreceptors and hardly responsive to stimulation of proprioceptors. After cutting both cervical connectives all mechanosensory excitation is lost, even for sensory inputs from the abdomen. This suggests that, in contrast to motor neurons, the sensory inputs to octopaminergic efferent neuromodulatory cells are pre-processed in the suboesophageal ganglion.  相似文献   

5.
Animals assess food availability in their environment by sensory perception and respond to the absence of food by changing hormone and neurotransmitter signals. However, it is largely unknown how the absence of food is perceived at the level of functional neurocircuitry. In Caenorhabditis elegans, octopamine is released from the RIC neurons in the absence of food and activates the cyclic AMP response element binding protein in the cholinergic SIA neurons. In contrast, dopamine is released from dopaminergic neurons only in the presence of food. Here, we show that dopamine suppresses octopamine signalling through two D2‐like dopamine receptors and the G protein Gi/o. The D2‐like receptors work in both the octopaminergic neurons and the octopamine‐responding SIA neurons, suggesting that dopamine suppresses octopamine release as well as octopamine‐mediated downstream signalling. Our results show that C. elegans detects the absence of food by using a small neural circuit composed of three neuron types in which octopaminergic signalling is activated by the cessation of dopamine signalling.  相似文献   

6.
In the American lobster (Homarus americanus) the biogenic amines serotonin and octopamine appear to play important and opposite roles in the regulation of aggressive behavior, in the establishment and/or maintenance of dominant and subordinate behavioral states and in the modulation of the associated postural stances and escape responses. The octopamine-containing neurosecretory neurons in the thoracic regions of the lobster ventral nerve cord fall into two morphological subgroups, the root octopamine cells, a classical neurohemal group with release regions along second thoracic roots, and the claw octopamine cells, a group that selectively innervates the claws. Cells of both subgroups have additional sets of endings within neuropil regions of ganglia of the ventral nerve cord. Octopamine neurosecretory neurons generally are silent, but when spontaneously active or when activated, they show large overshooting action potentials with prominent after-hyperpolarizations. Autoinhibition after high-frequency firing, which is also seen in other crustacean neurosecretory cells, is readily apparent in these cells. The cells show no spontaneous synaptic activity, but appear to be excited by a unitary source. Stimulation of lateral or medial giant axons, which excite serotonergic cells yielded no response in octopaminergic neurosecretory cells and no evidence for direct interactions between pairs of octopamine neurons, or between the octopaminergic and the serotonergic sets of neurosecretory neurons was found.  相似文献   

7.
Intersegmental coordination during locomotion in legged animals arises from mechanical couplings and the exchange of neuronal information between legs. Here, the information flow from a single leg sense organ of the stick insect Cuniculina impigra onto motoneurons and interneurons of other legs was investigated. The femoral chordotonal organ (fCO) of the right middle leg, which measures posture and movement of the femur-tibia joint, was stimulated, and the responses of the tibial motoneuron pools of the other legs were recorded. In resting animals, fCO signals did not affect motoneuronal activity in neighboring legs. When the locomotor system was activated and antagonistic motoneurons were bursting in alternation, fCO stimuli facilitated transitions from flexor to extensor activity and vice versa in the contralateral leg. Following pharmacological treatment with picrotoxin, a blocker of GABA-ergic inhibition, the tibial motoneurons of all legs showed specific responses to signals from the middle leg fCO. For the contralateral middle leg we show that fCO signals encoding velocity and position of the tibia were processed by those identified local premotor nonspiking interneurons known to contribute to posture and movement control during standing and voluntary leg movements. Interneurons received both excitatory and inhibitory inputs, so that the response of some interneurons supported the motoneuronal output, while others opposed it. Our results demonstrate that sensory information from the fCO specifically affects the motoneuronal activity of other legs and that the layer of premotor nonspiking interneurons is a site of interaction between local proprioceptive sensory signals and proprioceptive signals from other legs.  相似文献   

8.
Mechanical and chemical sensitivity of the palatine nerve, ramus palatinus facialis, innervating the anterior palate of the puffer, Fugu pardalis, and their central projection to the primary taste center were investigated. Application of horseradish peroxidase (HRP) to the central cut end of the palatine nerve resulted in retrogradely labeled neurons in the geniculate ganglion but no such neurons in the trigeminal ganglion, suggesting that the palatine nerve is represented only by the facial component. Tracing of the facial sensory root in serial histological sections of the brain stem suggested that the facial sensory nerve fibers project only to the visceral sensory column of the medulla. Peripheral recordings from the palatine nerve bundle showed that both mechanical and chemical stimuli caused marked responses. Mechanosensitive fibers were rather uniformly distributed in the nerve bundle. Intra-cranial recordings from the trigeminal and facial nerves at their respective roots revealed that tactile information produced in the anterior palate was carried by the facial nerve fibers. Elimination of the sea water current over the receptive field also caused a marked response in the palatine nerve bundle or facial nerve root while this did not cause any detectable responses in the trigeminal nerve root. Single fiber analyses of the mechanical responsiveness of the palatine nerve were performed by recording unit responses of 106 single fibers to mechanical stimuli (water flow), HCl (0.005 M), uridine-5'-monophosphate (UMP, 0.001 M), proline (0.01 M), CaCl2 (0.5 M), and NaSCN (0.5 M). All these fibers responded well to one of the above stimuli; however, most taste fibers did not respond well to the inorganic salts. The palatine fibers (n = 36), identified as mechanosensitive, never responded to any of the chemical stimuli, whereas chemosensitive fibers (n = 70) did not respond to mechanical stimuli at all. The chemosensitive units showed a high specificity to the above stimuli: they tended to respond selectively to hydrochloric acid, UMP, or proline. The responses of the mechanosensitive units consisted of phasic and tonic impulse trains and the sensitivity of the units varied considerably. The results reveal that the facial nerve fibers innervating the anterior palate of the puffer contain two kinds of afferent fibers, chemosensory and mechanosensory respectively, and suggest that the convergence of the tactile and gustatory information first occurs in the neurons of the primary gustatory center in the medulla.  相似文献   

9.
The two Protocerebral-Medulla 4 neurons (PM4a and b) in the locust brain have adjacent cell bodies in the medial deutocerebrum. They project through the posterior protocerebrum, forming limited arborisations en route, and enter the lobula and medulla of the ipsilateral optic lobe, where they form extensive, overlapping arborisations. The PM4a and b neurons are octopamine immunoreactive. Their octopamine content (approximately 25 pg per cell) is confirmed by gas chromatography-mass spectrometry; each cell contains approximately 25 pg p-octopamine. Simultaneous intracellular recording from exposed PM4a and b cell bodies reveals that the two cells are physiologically indistinguishable. They receive multimodal sensory inputs. Tactile/mechanosensory stimuli to much of the animal's body and head, acoustic stimuli, and simple visual stimuli all give rise to e.p.s.p.s and action potentials in the PM4 cell body. Simultaneous recording from the cell body in the deutocerebrum and the axon in the lobula demonstrates that action potentials are predominantly initiated in the deutocerebrum and propagate centrifugally, towards the optic lobe. Occasionally, bright light flashes will initiate an action potential in the axon in the optic stalk, which probably propagates bidirectionally: centripetally to the cell body, and centrifugally into the optic lobe. The extensive arborisations in the lobula and medulla are therefore likely to be sites of octopamine release. Because PM4 neurons are octopaminergic, project to the optic lobe, and receive modalities of sensory input known to dishabituate the Descending Contralateral Movement Detector (DCMD) visual interneuron, it is proposed that PM4 neurons are neuromodulatory — mediating dishabituation or arousal of the visual system.  相似文献   

10.
The effects of octopamine, the main cardioacceleratory transmitter in insects, were investigated, in the isolated hearts of the honeybee, Apis mellifera macedonica, and the olive fruit fly, Bactrocera oleae. Octopamine induced a biphasic effect on the frequency and force of cardiac contractions acting as an agonist, with a strong acceleratory effect, at concentrations higher than 10−12 M for the honeybee and higher than 50 × 10−9 M for the olive fruit fly. The heart of the honeybee is far more sensitive than the heart of olive fruit fly. This unusual sensitivity is extended to the blockers of octopaminergic receptors, where phentolamine at 10−5 M stopped the spontaneous contractions of the honeybee heart completely and permanently, while the same blocker at the same concentration caused only 50% inhibition in the heart of the olive fruit fly. Phentolamine and mianserin at low concentrations of 10−7 M also blocked the heart octopaminergic receptors, but for a short period of time, of less than 15.0 min, while a partial recovery in heart contraction started in spite of the presence of the antagonist. The unusual response of the honeybee heart in the presence of phentolamine and/or mianserin suggests excitatory effects of octopamine via two different receptor subtypes. At lower concentrations, 10−14 M, the agonist octopamine was converted to an antagonist, inducing a hyperpolarization in the membrane potential of the honeybee cardiac pacemaker cells and inhibiting the firing rate of the heart. The inhibitory effects of octopamine on certain parameters of the rhythmic bursts of the heart of the honeybee, were similar to those of mianserin and phentolamine, typical blockers of octopaminergic receptors. The heart of the olive fruit fly was 105 times less sensitive to octopamine, since a persistent inhibition of heart contractions occurred at 10−9 M. In conclusion, the acceleration of the insect heart is achieved by increasing the levels of octopamine, while there is a passive but also an active decrease in heart activity due to the minimization of octopamine.  相似文献   

11.
The decision to move towards a mating partner or a food source is essential for life. The mechanisms underlying these behaviors are not well understood. Here, we investigated the role of octopamine – the invertebrate analogue of noradrenaline – in innate olfactory attraction to ethanol. We confirmed that preference is caused via an olfactory stimulus by dissecting the function of the olfactory co-receptor Orco (formally known as OR83b). Orco function is not required for ethanol recognition per se, however it plays a role in context dependent recognition of ethanol. Odor-evoked ethanol preference requires the function of Tbh (Tyramine β hydroxalyse), the rate-limiting enzyme of octopamine synthesis. In addition, neuronal activity in a subset of octopaminergic neurons is necessary for olfactory ethanol preference. Notably, a specific neuronal activation pattern of tyraminergic/octopaminergic neurons elicit preference and is therefore sufficient to induce preference. In contrast, dopamine dependent increase in locomotor activity is not sufficient for olfactory ethanol preference. Consistent with the role of noradrenaline in mammalian drug induced rewards, we provide evidence that in adult Drosophila the octopaminergic neurotransmitter functions as a reinforcer and that the molecular dissection of the innate attraction to ethanol uncovers the basic properties of a response selection system.  相似文献   

12.
At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca2+) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons.  相似文献   

13.
Recent studies suggest that N, N-diethyl-meta-toluamide (DEET) is an acetylcholinesterase inhibitor and that this action may result in neurotoxicity and pose a risk to humans from its use as an insect repellent. We investigated the mode of action of DEET neurotoxicity in order to define the specific neuronal targets related to its acute toxicity in insects and mammals. Although toxic to mosquitoes (LD50 ca. 1.5 µg/mg), DEET was a poor acetylcholinesterase inhibitor (<10% inhibition), even at a concentration of 10 mM. IC50 values for DEET against Drosophila melanogaster, Musca domestica, and human acetylcholinesterases were 6–12 mM. Neurophysiological recordings showed that DEET had excitatory effects on the housefly larval central nervous system (EC50: 120 µM), but was over 300-fold less potent than propoxur, a standard anticholinesterase insecticide. Phentolamine, an octopamine receptor antagonist, completely blocked the central neuroexcitation by DEET and octopamine, but was essentially ineffective against hyperexcitation by propoxur and 4-aminopyridine, a potassium channel blocker. DEET was found to illuminate the firefly light organ, a tissue utilizing octopamine as the principal neurotransmitter. Additionally, DEET was shown to increase internal free calcium via the octopamine receptors of Sf21 cells, an effect blocked by phentolamine. DEET also blocked Na+ and K+ channels in patch clamped rat cortical neurons, with IC50 values in the micromolar range. These findings suggest DEET is likely targeting octopaminergic synapses to induce neuroexcitation and toxicity in insects, while acetylcholinesterase in both insects and mammals has low (mM) sensitivity to DEET. The ion channel blocking action of DEET in neurons may contribute to the numbness experienced after inadvertent application to the lips or mouth of humans.  相似文献   

14.
To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release and then restored DVMAT activity in either individual or multiple aminergic systems, using transgenic rescue techniques. We find that larval survival, larval locomotion, and female fertility rely predominantly on octopaminergic circuits with little apparent input from the vesicular release of serotonin or dopamine. In contrast, male courtship and fertility can be rescued by expressing DVMAT in octopaminergic or dopaminergic neurons, suggesting potentially redundant circuits. Rescue of major aspects of adult locomotion and startle behavior required octopamine, but a complementary role was observed for serotonin. Interestingly, adult circadian behavior could not be rescued by expression of DVMAT in a single subtype of aminergic neurons, but required at least two systems, suggesting the possibility of unexpected cooperative interactions. Further experiments using this model will help determine how multiple aminergic systems may contribute to the regulation of other behaviors. Our data also highlight potential differences between behaviors regulated by standard exocytotic release and those regulated by other mechanisms.  相似文献   

15.
The wasp Ampulex compressa injects a cocktail of neurotoxins into the brain of its cockroach prey to induce an enduring change in the execution of locomotory behaviors. Our hypothesis is that the venom injected into the brain indirectly alters the activity of monoaminergic neurons, thus changing the levels of monoamines that tune the central synapses of locomotory circuits. The purpose of the present investigation was to establish whether the venom alters the descending control, from the brain, of octopaminergic neurons in the thorax. This question was approached by recording the activity of specific identified octopaminergic neurons after removing the input from the brain or after a wasp sting into the brain. We show that the activity of these neurons is altered in stung and "brainless" animals. The spontaneous firing rate of these neurons in stung and brainless animals is approximately 20% that in control animals. Furthermore, we show that an identified octopamine neuron responds more weakly both to sensory stimuli and to direct injection of current in all treated groups. The alteration in the activity of octopamine neurons is likely to be part of the mechanism by which the wasp induces a change in the behavioral state of its prey and also affects its metabolism by reducing the potent glycolytic activator fructose 2,6-bisphosphate in leg muscle. To our knowledge, this is the first direct evidence of a change in electrical activity of specific monoaminergic neurons that can be so closely associated with a venom-induced change in behavioral state of a prey animal.  相似文献   

16.
17.
A morphofunctional investigation of the different neuronal subpopulations projecting through each of the nerves IV–VI emerging bilaterally from the terminal abdominal ganglion (TAG) was correlated with the octopaminergic activity in the ganglion that controls the ovipositor movements associated with calling behavior in the female gypsy moth Lymantria dispar. Tetramethylrodamine‐dextran backfills from nerve stumps resulted in a relatively low number of TAG projections, ranging from 12 to 13 for nerve pair IV, 12 to 14 for nerve pair V, and 8 to 9 for nerve pair VI. Furthermore, as assessed by electrophysiological recordings, a number of fibers within each of these nerves displays spontaneous tonic activity, also when the ganglion is fully disconnected from the ventral nerve cord (VNC). Octopamine (OA) applications to the TAG strongly enhanced the activity of these nerves, either by increasing the firing rate of a number of spontaneously firing units or by recruiting new ones. This octopaminergic activity affected calling behavior, and specifically the muscle activity leading to cycling extensions of the intersegmental membrane (IM) between segments VIII and IX (ovipositor). Our results indicate that in the female gypsy moth the octopaminergic neural activity of the TAG is coupled with extensions and retractions of IM for the purpose of releasing pheromone, where motor units innervated by nerve pair IV appear antagonistic with respect to those innervated by nerve pair V.  相似文献   

18.
Habituation of excitatory synaptic inputs onto identified motor neurons of the locust metathoracic ganglion, driven electrically and by natural stimuli, was examined using intracellular recording. Rapid progressive reduction in amplitude of EPSPs from a variety of inputs onto fast-type motor neurons occurred. The habituated EPSPs were quickly dishabituated by iontophoretic release of octopamine from a microelectrode into the neuropilar region of presumed synaptic action. The zone within which release was effective for a given neuron was narrowly-defined. With larger amounts of octopamine applied at a sensitive site the EPSP became larger than normal, and in many instances action potentials were initiated by the sensitized response. Very small EPSPs onto a motor neuron, which were associated with proprioceptive feedback, and which were originally too small to be detected above the noise, were potentiated to a level of several mV by the iontophoresed octopamine. A DUM neuron (presumed to be octopaminergic) was found, whose direct stimulation was followed by a strong dishabituating and sensitizing action leading to spikes, of inputs to an identified flexor tibiae motor neuron. The action and its time course were closely similar to those evoked by octopamine iontophoresed into the neuropil in the region of synaptic inputs to the motor neuron. It is concluded that DUM (octopaminergic) neurons exert large potentiating actions on central neuronal excitatory synaptic transmission in locusts.  相似文献   

19.
During anesthesia, slow-wave sleep and quiet wakefulness, neuronal membrane potentials collectively switch between de- and hyperpolarized levels, the cortical UP and DOWN states. Previous studies have shown that these cortical UP/DOWN states affect the excitability of individual neurons in response to sensory stimuli, indicating that a significant amount of the trial-to-trial variability in neuronal responses can be attributed to ongoing fluctuations in network activity. However, as intracellular recordings are frequently not available, it is important to be able to estimate their occurrence purely from extracellular data. Here, we combine in vivo whole cell recordings from single neurons with multi-site extracellular microelectrode recordings, to quantify the performance of various approaches to predicting UP/DOWN states from the deep-layer local field potential (LFP). We find that UP/DOWN states in deep cortical layers of rat primary auditory cortex (A1) are predictable from the phase of LFP at low frequencies (< 4 Hz), and that the likelihood of a given state varies sinusoidally with the phase of LFP at these frequencies. We introduce a novel method of detecting cortical state by combining information concerning the phase of the LFP and ongoing multi-unit activity.  相似文献   

20.
Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine) neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-FruM neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号