首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental stresses, such as cold, heat, salinity, and drought, induce ethylene production and oxidative stress and cause damage in plants. On the other hand, studies have shown that salicylic acid (SA) induced resistance to environmental stresses in plants. In this research, the effects of ethylene on chlorophyll (Chl), carotenoid (Car), anthocyanin, flavonoids, ascorbic acid, dehydroascorbic acid, total ascorbate, lipid peroxidation, and ethylene production in leaves of canola pretreated with SA were studied. The plants were grown in pots until they have four leaves. Leaves were sprayed for two days with three different concentrations of SA (0, 0.5, and 1 mM). The plants were treated for three days with three concentrations of ethylene (0, 50, and 100 ppm). At the end of the ethylene treatments, all examined parameters were measured. The results showed that the ethylene treatments induced lipid peroxidation, while SA mitigated this effect. The ethylene treatment lowered significantly Chl and Car contents and anthocyanin accumulation, but SA alleviated these effects. SA induced an increase in ascorbic acid content in canola plants after the ethylene treatments. Therefore, we concluded that SA played an important role in the alleviation of damages caused by stress conditions.  相似文献   

2.
Salinity stress is limiting growth and productivity of plants in many areas of the world. Plants adopted different strategies to minimize the effect of salt stress. A pot experiment was conducted to investigate the morphological and physiological changes produced in Canola (Brassica napus) by exogenous application of ellagic acid (EA) under saline conditions. EA is an antioxidant, expected to reduce the effect of salinity stress. The seeds of two canola cultivars, Rainbow and Oscar, were soaked for 6?h with different concentrations of EA (0, 55 and 110?µg/ml). The soaked seeds were sown in small pots. Salt stress was imposed on the plants by applying NaCl solutions of different concentrations (0, 60 and 120?mM) and the duration of stress was for four weeks. Salinity stress reduced seed germination and disturbed the morphological and physiological attributes of B. napus. Application of EA as seed soaking reduced the effect of salinity and enhanced the growth of plants. Overall, we could confirm a significant role of EA by inducing salinity tolerance in B. napus.  相似文献   

3.
The effects of Si nutrition on transpiration, leaf anatomy, accumulation of Na+, K+, Cl?, P, Fe and B and some reactive oxygen species related parameters were investigated in canola plants under salinity. Plants were grown hydroponically in growth chamber under controlled conditions at 0 and 100?mM NaCl each supplied with or without 1.7?mM silicon (Si) as sodium silicate. Salinity imposed significant reduction in growth parameters of plants like fresh weights of roots and shoots and leaf area. It also led to accumulation of Na+ and Cl? and a decrease in the concentration of K+, P, B and Fe. Reduction of transpiration, stomatal density and specific leaf area in leaves and an increase in leaf thickness were amongst other symptoms in salt-affected plants. Salinity led to higher concentration of hydrogen peroxide, increased lipid peroxidation and decrease of catalase and peroxidase activity, which suggests the induction of oxidative stress in plants. Silicon nutrition could prevent toxic ions (Na+ and Cl?) accumulation while higher levels of essential minerals like K+, P and Fe were maintained in plants. Consequently, silicon nutrition decreased oxidative stress in plants, evidenced by increase in antioxidant enzyme activity, reduction in hydrogen peroxide and lipid peroxidation.  相似文献   

4.
We identified quantitative trait loci (QTL) underlying variation for flowering time in a doubled haploid (DH) population of vernalisation—responsive canola (Brassica napus L.) cultivars Skipton and Ag-Spectrum and aligned them with physical map positions of predicted flowering genes from the Brassica rapa genome. Significant genetic variation in flowering time and response to vernalisation were observed among the DH lines from Skipton/Ag-Spectrum. A molecular linkage map was generated comprising 674 simple sequence repeat, sequence-related amplified polymorphism, sequence characterised amplified region, Diversity Array Technology, and candidate gene based markers loci. QTL analysis indicated that flowering time is a complex trait and is controlled by at least 20 loci, localised on ten different chromosomes. These loci each accounted for between 2.4 and 28.6 % of the total genotypic variation for first flowering and response to vernalisation. However, identification of consistent QTL was found to be dependant upon growing environments. We compared the locations of QTL with the physical positions of predicted flowering time genes located on the sequenced genome of B. rapa. Some QTL associated with flowering time on A02, A03, A07, and C06 may represent homologues of known flowering time genes in Arabidopsis; VERNALISATION INSENSITIVE 3, APETALA1, CAULIFLOWER, FLOWERING LOCUS C, FLOWERING LOCUS T, CURLY LEAF, SHORT VEGETATIVE PHASE, GA3 OXIDASE, and LEAFY. Identification of the chromosomal location and effect of the genes influencing flowering time may hasten the development of canola varieties having an optimal time for flowering in target environments such as for low rainfall areas, via marker-assisted selection.  相似文献   

5.
Phytoextraction is an emerging technology for non-destructive remediation of heavy metal-polluted soils. This study was conducted to test chelate-assisted phytoextraction of Cu, Pb and Zn using EDTA and canola (Brassica napus L. cv. Petranova) on a moderately polluted industrial soil (loamy sand) in the sub-continental climate of Eastern Austria. The effects of the rate (up to 2.1 g kg–1 soil) and mode (single versus split) of EDTA application on the biomass, water contents and metal concentrations in shoots and roots were investigated along with changes of metal lability in soil and leaching from the root zone in parallel outdoors pot and lysimeter experiments. Labile (1 M NH4NO3-extractable) metal concentrations in soil increased considerably upon application of EDTA, indicating enhanced phytoavailability. However, this was also associated with enormously increased metal concentrations in the leachates collected below the root zone. Enhanced metal labilities and leachate concentrations persisted for more than 1 year after harvest. Metal lability was more enhanced by EDTA in rhizosphere relative to bulk soil, indicating interactions of EDTA with root activities. Shoot biomass and water contents of canola were virtually unaffected by EDTA, revealing that canola can tolerate excessive metal concentrations in soil pore water. Metal concentrations in shoots were increased considerably, but were insufficient to obtain reasonable extraction rates. Split applications were generally more effective than the same amounts of EDTA added at once. Metal concentrations in roots decreased after each application of EDTA, possibly indicating metal removal from roots by free protonated EDTA, but increased again within several days. As the application of chelate-assisted phytoextraction is limited by the risk of groundwater pollution, further work should focus on natural, continuous phytoextraction technologies.  相似文献   

6.
7.
Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.  相似文献   

8.
Abstract

An experiment was conducted to assess the effect of pre-sowing seed treatment with triacontanol (TRIA) in canola (Brassica napus L.) cultivar (RBN-3060) under saline stress. Canola seeds were soaked in three levels of TRIA (0, 0.5, and 1 mg L?1) for 12 hours. Three levels of salt stress (0, 100, and 150 mM NaCl) in full strength Hoagland's nutrient solution were applied to 56-days-old plants. Salt stress caused a significant reduction in growth, gas exchange, photochemical quenching (qP), and shoot and root K+ contents, while increased leaf glycine betaine, free proline, and shoot Na+ contents. Pre-sowing seed treatment with TRIA increased shoot fresh weight, number of seeds per plant, photosynthetic rate, transpiration rate, ratio of chlorophyll a/b, qP, electron transport rate, shoot and root K+ contents, and free proline and glycine betaine contents of canola plants at various TRIA levels under nonsaline or saline conditions.  相似文献   

9.
Allelic effects observed in QTL discovery experiments must be confirmed to be useful in subsequent breeding efforts. Two QTL affecting seed yield of spring hybrid canola (Brassica napus L.) were previously identified in two populations of inbred backcross lines (IBLs) containing germplasm introgressed from a winter cultivar. The effects of favorable alleles at these QTL were retested by crossing two selected IBLs (M5 and M31) to three spring canola lines having different genetic backgrounds. Doubled haploid (DH) lines derived from each F1 were genotyped with RFLP markers flanking the QTL and grouped into the four possible QTL genotypes. For the first field experiment, DH lines derived by crossing the M5 line to one spring line were crossed to two female testers and evaluated as individual testcross progenies in one environment. QTL genotypes had large variances and were not significantly different. A second field experiment was conducted using the DH lines from the first experiment and two other sets of DH lines derived from the M31 line crossed to two different spring canola lines. Individual lines within each QTL genotype of each set were bulked and crossed to the same testers used in Experiment 1. Bulked hybrid seeds of each QTL genotype were planted in a split-split plot randomized block design and 12 replicates. QTL genotypes had smaller variances in this experiment, and the effects of one QTL were confirmed in some genetic backgrounds. These results suggest that bulking of QTL genotypes and use of an appropriate experimental design with many replicates are needed to detect small differences between QTL genotypes.  相似文献   

10.
Little is known about the composition and diversity of the bacterial community associated with plant roots. The purpose of this study was to investigate the diversity of bacteria associated with the roots of canola plants grown at three field locations in Saskatchewan, Canada. Over 300 rhizoplane and 220 endophytic bacteria were randomly selected from agar-solidified trypticase soy broth, and identified using fatty acid methyl ester (FAME) profiles. Based on FAME profiles, 18 bacterial genera were identified with a similarity index >0.3, but 73% of the identified isolates belonged to four genera: Bacillus (29%), Flavobacterium (12%), Micrococcus (20%) and Rathayibacter (12%). The endophytic community had a lower Shannon-Weaver diversity index (1.35) compared to the rhizoplane (2.15), and a higher proportion of Bacillus, Flavobacterium, Micrococcus and Rathayibacter genera compared to rhizoplane populations. Genera identified in the endophytic isolates were also found in the rhizoplane isolates. Furthermore, principal component analysis indicated three clusters of bacteria regardless of their site of origin, i.e., rhizoplane or endophytic. In addition, the rhizoplane communities of canola and wheat grown at the same site differed significantly. These results indicate that diverse groups of bacteria are associated with field-grown plants and that endophytes are a subset of the rhizoplane community.  相似文献   

11.
Linkage disequilibrium was investigated in canola quality winter rapeseed to analyze (1) the prospects for whole-genome association analyses and (2) the impact of the recent breeding history of rapeseed on linkage disequilibrium. A total of 845 mapped AFLP markers with allele frequencies ≥0.1 were used for the analysis of linkage disequilibrium in a population of 85 canola quality winter rapeseed genotypes. A low overall level of linkage disequilibrium was found with a mean r 2 of only 0.027 over all 356,590 possible marker pairs. At a significance threshold of P = 2.8 × 10−7, which was derived by a Bonferroni correction from a global α-level of 0.1, only 0.78% of the marker pairs were in significant linkage disequilibrium. Among physically linked marker pairs, the level of linkage disequilibrium was about five times higher with more than 10% of marker pairs in significant linkage disequilibrium. Linkage disequilibrium decayed rapidly with distance between linked markers with high levels of linkage disequilibrium extending only for about 2 cM. Owing to the rapid decay of linkage disequilibrium with distance association analyses in canola quality rapeseed will have a significantly higher resolution than QTL analyses in segregating populations by interval mapping, but much larger number of markers will be necessary to cover the whole genome. A major impact of the recent breeding history of rapeseed on linkage disequilibrium could not be observed.  相似文献   

12.

Background

Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a ubiquitous intracellular secondary messenger in plants. Calcineurin B-like proteins (CBLs) are Ca2+ sensors and regulate a group of Ser/Thr protein kinases called CBL-interacting protein kinases (CIPKs). Although the CBL-CIPK network has been demonstrated to play crucial roles in plant development and responses to various environmental stresses in Arabidopsis, little is known about their function in canola.

Results

In the present study, we identified seven CBL and 23 CIPK genes from canola by database mining and cloning of cDNA sequences of six CBLs and 17 CIPKs. Phylogenetic analysis of CBL and CIPK gene families across a variety of species suggested genome duplication and diversification. The subcellular localization of three BnaCBLs and two BnaCIPKs were determined using green fluorescence protein (GFP) as the reporter. We also demonstrated interactions between six BnaCBLs and 17 BnaCIPKs using yeast two-hybrid assay, and a subset of interactions were further confirmed by bimolecular fluorescence complementation (BiFC). Furthermore, the expression levels of six selected BnaCBL and 12 BnaCIPK genes in response to salt, drought, cold, heat, ABA, methyl viologen (MV) and low potassium were examined by quantitative RT-PCR and these CBL or CIPK genes were found to respond to multiple stimuli, suggesting that the canola CBL-CIPK network may be a point of convergence for several different signaling pathways. We also performed a comparison of interaction patterns and expression profiles of CBL and CIPK in Arabidospsis, canola and rice, to examine the differences between orthologs, highlighting the importance of studying CBL-CIPK in canola as a prerequisite for improvement of this crop.

Conclusions

Our findings indicate that CBL and CIPK family members may form a dynamic complex to respond to different abiotic or hormone signaling. Our comparative analyses of the CBL-CIPK network between canola, Arabidopsis and rice highlight functional differences and the necessity to study CBL-CIPK gene functions in canola. Our data constitute a valuable resource for CBL and CPK genomics.  相似文献   

13.
The effects of different concentrations of various macroelements on growth and endogenous GAs levels in root, stem, and leaf tissue of maize plants (Zea mays L.) were studied. Plants were cultivated in sand and supplied twice a week with a nutrient solution containing optimum, excessive, or deficient concentrations of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and iron. Plants were harvested from three different periods: vegetation (4–5 leaves), flowering, and fruiting. The levels of gibberellic acid-like substances (GA3 equivalents ng g-1 FW) were determined by using high-performance liquid chromatography (HPLC). In the first period (vegetative; 4–5 leaves), the levels of GAs in root, stem, and leaf of maize plants treated with excessive concentration of N, P, and Mg were increased between 6% and 27%. In the second period (flowering), significant increase was not observed in the levels of GAs, whereas a decrease was determined between 8% and 35%. In the third period (fruiting), the levels of GAs were lower (between 11% and 76%) than control plants in all applications.  相似文献   

14.
Hocking  P. J. 《Plant and Soil》1993,155(1):387-390
Critical concentrations of NO3-N in fresh petiole tissue and total N in the dried lamina were determined for the youngest mature leaf (YML) of field-grown canola. For dry matter yield of canola sown on 4 May, critical NO3-N concentration in the YML petiole at the rosette stage (RS) was 1.46 mg/g fresh wt. At the flower-buds-visible stage (BV) it was 0.45 mg/g fresh wt. For seed yield the values were 1.72 and 0.53 mg/g fresh wt. Critical total N concentration in the YML lamina for dry matter yield were 69 mg/g dry wt. at RS and 57 at BV. For seed yield they were 71 and 59 mg/g dry wt. Critical NO3-N concentrations in the YML petiole of canola sown on 30 May were reduced by 50%; critical total-N concentrations in the YML lamina were not reduced to the same extent. Despite the reductions in critical N concentrations in the YML, critical N fertilizer rates for vegetative growth and seed yield were unaffected by sowing date or plant growth stage.  相似文献   

15.
Treatment of rape seedlings with increasing CdCl2 concentrations in the culture medium resulted in a cadmium accumulation within plant tissues, which increased with external metal dose; such accumulation was more important in roots than in leaves. Biomass production was severely inhibited, even at low cadmium concentration. In leaves, quantities of chloroplastic lipids, monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfolipids (SL) and phosphatidylglycerol (PG) decreased sharply under metallic treatment. However, contents of extrachloroplastic lipids, mainly phosphatidylcholine (PC) and phosphatidylethanolamine (PE) increased significantly. In contrast to leaves, contents of root phospholipids decreased. Likewise, levels of tri-unsaturated fatty acids: linolenic (C18:3) and hexadecatrienoïc (C16:3) dropped in leaves of treated seedlings as compared to those of controls, suggesting that heavy metals induced an alteration in the fatty acid desaturation process or a stimulation of their peroxidation. Also, trans palmitoleic acid (C16:1-trans) level in PG decreased considerably. In roots, there was a slight decrease in C18:3 level, with a concomitant increase in the C18:2 percentage. Radioactive labelling of leaf lipids with (1-14C) acetate allowed to show that fatty acid biosynthesis was noticeably altered at the highest cadmium dose used (50 μM). Biosynthesis of tri-unsaturated fatty acids was also inhibited which may explain the decline in non-labelled lipid contents. Results showed that metallic ion seems to affect selectively chloroplastic membranes due to an inhibition of polyunsaturated fatty acid biosynthesis. Moreover, a lipid peroxidation occurred in our case because of the spectacular increase of malondialdehyde (MDA) content observed in cadmium treated leaves. To cite this article: N. Ben Youssef et al., C. R. Biologies 328 (2005).  相似文献   

16.
Journal of Plant Biochemistry and Biotechnology - Canola growers in the North Central Region of the United States and Canada are highly concerned about possible early frost. Plants can be killed...  相似文献   

17.
Honsdorf N  Becker HC  Ecke W 《Génome》2010,53(11):899-907
QTL mapping by association analysis has recently gained interest in plant breeding research as an alternative to QTL mapping in segregating populations from biparental crosses. In a first experiment on whole-genome association analysis in rapeseed, 684 mapped AFLP markers were tested for association with 14 traits in a set of 84 canola quality winter rapeseed cultivars. For association analysis a general linear model was used. By testing significance of marker-trait associations against a false discovery rate of 0.2, between 1 and 34 associated markers were found for 10 of the 14 traits. Taking into account linkage disequilibrium between the significant markers, these markers represent between 1 and 22 putative QTL for the respective traits. The minimum phenotypic variance explained by the QTL for the different traits ranged from 15% to 53%. A subset of 27 markers were significantly associated with two or more traits. These markers were predominantly shared between traits that were significantly correlated at the phenotypic level. The results show clearly that in rapeseed, QTL mapping by association analysis is a viable alternative to QTL mapping in segregating populations.  相似文献   

18.
The impact of culture conditions and addition of antioxidants to media on microspore embryogenesis in rapeseed (Brassica napus cv. ‘PF704’) was investigated. Different concentrations of ascorbic acid (0, 5, 10, 20, 50, 100, and 200 mg l?1) and alpha (α)-tocopherol (0, 5, 10, 20, 50, 100, and 200 mg l?1) were evaluated along with two temperature pretreatments (18 d at 30°C; 2 d at 32.5°C followed by 16 d at 30°C). In addition, combinations of reduced glutathione (0, 10, 50, and 100 mg l?1) and ascorbic acid (5 and 10 mg l?1) were tested. Microspore embryogenesis was significantly enhanced using 10 mg l?1 ascorbic acid (334 embryos per Petri dish) compared with untreated cultures (184 embryos per Petri dish) at 30°C. α-Tocopherol (5 and 10 mg l?1) enhanced (312 and 314 embryos per Petri dish, respectively) microspore embryogenesis relative to untreated cultures (213 embryos per Petri dish) at 30°C, although there were no significant differences among cultures treated with 5–50 mg l?1 α-tocopherol. When 50 mg l?1 α-tocopherol was combined with 5 or 10 mg l?1 ascorbic acid, embryogenesis was significantly enhanced (308 and 328 embryos per Petri dish, respectively) relative to other ascorbic acid levels. Moreover, 10 mg l?1 of reduced glutathione and 5 mg l?l ascorbic acid enhanced microspore embryogenesis (335 embryos per Petri dish) compared to cultures without reduced glutathione (275 embryos per Petri dish). Microspore embryogenesis could be improved by adding ascorbic acid, α-tocopherol, and reduced glutathione when the appropriate combination and temperature pretreatment were selected.  相似文献   

19.
 Self-incompatibility (SI) in Brassica is a sporophytic system, genetically determined by alleles at the S-locus, which prevents self-fertilization and encourages outbreeding. This system occurs naturally in diploid Brassica species but is introduced into amphidiploid Brassica species by interspecific breeding, so that in both cases there is a potential for yield increase due to heterosis and the combination of desirable characteristics from both parental lines. Using a polymerase chain reaction (PCR) based analysis specific for the alleles of the SLG (S-locus glycoprotein gene) located on the S-locus, we genetically mapped the S-locus of B. oleracea for SI using a F2 population from a cross between a rapid-cycling B. oleracea line (CrGC-85) and a cabbage line (86-16-5). The linkage map contained both RFLP (restriction fragment length polymorphism) and RAPD (random amplified polymorphic DNA) markers. Similarly, the S-loci were mapped in B. napus using two different crosses (91-SN-5263×87-DHS-002; 90-DHW-1855-4×87-DHS-002) where the common male parent was self-compatible, while the S-alleles introgressed in the two different SI female parents had not been characterized. The linkage group with the S-locus in B. oleracea showed remarkable homology to the corresponding linkage group in B. napus except that in the latter there was an additional locus present, which might have been introgressed from B. rapa. The S-allele in the rapid-cycling Brassica was identified as the S29 allele, the S-allele of the cabbage was the S 5 allele. These same alleles were present in our two B. napus SI lines, but there was evidence that it might not be the active or major SI allele that caused self-incompatibility in these two B. napus crosses. Received: 7 June 1996/Accepted: 6 September 1996  相似文献   

20.
To minimize the damaging effects of stresses, plant growth regulators (PGRs) are widely used to sustain the plant life under stress-prone environments. So, a study was carried out to evaluate the response of two canola (Brassica napus L.) cultivars, Dunkeld and Cyclone, to foliar-applied two potential PGRs, nitric oxide (NO) and 5-aminolevulinic acid, under water deficit conditions. In this study, the levels of NO and ALA used were 0.02 and 0.895 mM, respectively. Plants of both canola cultivars were subjected to control (100% field capacity) and water deficit (60% field capacity). Drought stress significantly decreased growth, chlorophyll pigments, relative water contents (RWC), and soluble proteins, while it increased relative membrane permeability (RMP), proline, glycinebetaine (GB), malondialdehyde (MDA), total phenolics, and activities of catalase (CAT) and peroxidase (POD) enzymes in both cultivars. Foliar application of PGRs improved growth, chlorophyll a, GB, total phenolics, CAT activity, and total soluble proteins, while it decreased RMP, MDA, and POD activity in both canola cultivars. Other physio-biochemical attributes such as chlorophyll b, RWC, hydrogen peroxide (H2O2) and proline contents as well as superoxide dismutase (SOD) activity remained unaffected due to application of PGRs. So, the results of the present study suggest that exogenous application of NO and ALA could be useful to enhance the drought tolerance of canola plants by up-regulating the oxidative defense system, osmoprotectant accumulation, and minimizing the lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号