首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Assimilation of N by heterotrophic soil microbial biomass is associated with decomposition of organic matter in the soil. The form of N assimilated can be either low molecular weight organic N released from the breakdown of organic matter (direct assimilation), or NH+4 and NO3 from the soil inorganic N pool, into which mineralized organic N is released (mineralization immobilization turnover). The kinetics of C and N turnover in soil is quantifiable by means of computer simulation models. NCSOIL was constructed to represent the two assimilation schemes. The rate of N assimilation depends on the rate of C assimilation and microbial C/N ratio, thereby rendering it independent of the assimilation scheme. However, if any of the N forms is labeled, a different amount of labeled N assimilation will be simulated by the different schemes. Experimental data on inorganic N and 15N and on organic 15N dynamics in soils incubated with 15N added as NH+4 or organic N were compared with data simulated by different model schemes. Direct assimilation could not account for the amount of 15N assimilated in any of the experimental treatments. The best fit of the model to experimental data was obtained for the mineralization immobilization turnover scheme when both NH+4 and NO3 were assimilated, in proportion to their concentration in the soil.  相似文献   

2.
Abstract. Presence of 2.4-diaminobutyric acid (A2bu), a neurotoxin, in tissues of flatpea ( Lathyrus sylvestris L.) necessitates a thorough understanding of the regulation of this nonprotein amino acid before the species can be recommended to livestock producers for forage applications. To determine how different concentrations and ratios of NO3 and NH+4 in growth media influence the levels of A2bu and other free amino acids in the 'Lathco'flatpea cultivar, plants were grown hydroponically in controlled environments. The concentration of A2bu was highest in tissues when the NO3 to NH+4 ratio in the nutrient solution was low. Responses of amides and other nonprotein amino acids, especially in the roots, followed a similar trend. Free protein amino acids in leaves and stems were generally unaffected by changes in NO3 to NH+4 ratios. In roots, protein amino acids increased as the NO3 to NH+4 ratio in the growth medium increased. Ammonium inhibited shoot and root growth; NO3 alleviated the toxic effects of NH+4. Soluble protein concentrations were higher in the shoots of NO3-fed plants and in the roots of plants supplied with NH+4. These results suggest that accumulation of A2bu and other nonprotein amino acids, as well as asparagine and glutamine, plays a role in detoxification of NH+4 and storage of N.  相似文献   

3.
Changes in nodule growth and activity and in the concentrations of soluble N compounds in nodules, leaves and xylem sap under conditions of altered N nutrition in the actinorhizal plant Myrica gale L. are reported. Altering the N nutrition of symbiotic plants may alter the internal regulation of combined N which in turn may regulate nodule growth and activity. Flushing nodules daily with 100% O2 caused a decline in amide concentration and an increase in nodule growth although plants had recovered some nitrogenase activity within 4 h of exposure to O2. Samples of nodules, leaves and xylem sap were derivatized and amino acids identified and quantified using either reverse phase high performance liquid chromatography or gas chromatography-mass spectrometry in single ion monitoring mode. The ratio of asparagine in the nodules to that in the xylem was much higher in plants fed N (6.7 for NH+4-fed and 8.3 for NO3-fed plants) than for N2-fixing plants (2.5). Significant amounts of 15N added as 15NH+4 or 15NO3 accumulated in nodules following accumulation in the shoot which is consistent with the translocation of N to the nodules via the phloem. The uptake of 15NH+4 led to the synthesis and subsequent translocation of glutamine in the xylem sap. These results are discussed in terms of the feedback mechanisms that may regulate nitrogen fixation in Myrica root nodules.  相似文献   

4.
Over a period of several days, rhythmic changes in extracellular NH+4 concentration take place in cultures of the cyanobacterium Microcystis firma (Bré et Lenorm.) Schmidle, strain Gromov/St. Petersb. 398, under conditions of restricted CO2 supply and light/dark alternation. The changes are enhanced by nitrate supply. Among the various processes generating intracellular NH+4 (NH44 uptake, NO3 reduction, protein and amino acid degradation, photorespiration), NO3 reduction appears as the one most important. This can be concluded from experiments with and without nitrate and/or ammonium in the medium. In the presence of saturating CO2, continuous light, or continuous darkness, rhythmic NH+44 oscillations are not induced. Studies of the incorporation of NH+4 nitrogen by in vivo 15N-NMR show that if CO2 is supplied, 15N is accumulated in several components with the following time course: in the first hour in Gln (δ), in the second hour in the α-amino groups of most nonbranched amino acids, in the third hour in γ-aminobutyric acid (GABA), Orn (δ) and Lys (ε), and in the sixth hour in Ala. Carbon limitation, however, results in accumulation of label in the amide nitrogen of glutamine only.  相似文献   

5.
Uptake regions of inorganic nitrogen in roots of carob seedlings   总被引:2,自引:0,他引:2  
Three-week-old seedlings of carob ( Ceratonia siliqua L. cv. Mulata) were grown for 9 weeks under different root temperatures (20, 30 and 40°C) at pH values of 5, 7 and 9 with nitrate or ammonium as nitrogen source. Nitrogen uptake rates were determined by depletion from the medium and decreased with distance from the apex. The decline of nitrogen uptake rates along the roots depended on the form of inorganic nitrogen in the medium as well as on pH and temperature, such that the NO3 and NH+4 ions were taken up essentially by the root tips (0–2 cm) through processes requiring energy. The uncharged NH3 species entered passively, through the mature parts of the root (2–10 cm). Root zone temperature and pH affect the NH+4/NH3 equilibrium in the nutrient solution and, consequently, the uptake areas of the root for these ions. Furthermore. while root tip uptake of nitrogen is energy dependent, uptake through mature root areas is essentially passive and seems to depend on a well developed apparent free space.  相似文献   

6.
Two-month-old jack pine ( Pinus banksiana Lamb.) seedlings were placed in a greenhouse where both nitrogen source and light level were varied. After 4 months, whole seedling biomass, leaf biomass and relative growth rate were greatest in seedlings grown with NH+4/NO/NO3-N and full light (FL) and least in seedlings grown with NO 3-N and low light (LL). NO 3-seedlings grown under full light and NH+4/NO3-seedlings grown under low light were approximately equal. This indicates that the extra carbon costs of assimilating only NO3-N were similar to the reduction of carbon fixation resulting from a 50% decrease in photon flux density. Percentage and total nitrogen content of needles were greater in seedlings grown under low light independent of nitrogen fertilization. Percentage and total nitrogen content of roots were higher under low light and lower when fertilized with NO3.
Nitrate reductase (NR) activity was higher in roots than in needles, while glutamine synthetase (GS) activity was higher in needles than in roots. Low light resulted in decreased NR activity (mg N)−1 in needles, but not in roots. However, no nitrate was detected in the needles in any treatment. GS activity, on the other hand, was greater under low light in both needles and roots. GS activity in needles is most likely involved with the reassimilation rather than the initial assimilation of ammonium. Some implications of these shifts in enzymatic activity for ecological phenomena in forests are discussed.  相似文献   

7.
Abstract The kinetic parameters of NH+4-uptake in yeast cells were determined by a method that is based on the following changes in the external NH+4 concentration in cell suspensions by using NADH-dependent glutamate formation from NH+4 and 2-oxoglutarate. The kinetics of the observed NADH oxidation were analyzed by computer and enabled an estimation of V max and K m of the NH+4-uptake system of the cells.  相似文献   

8.
The effect of the nitrogen source on carbohydrate and protein contents and on several enzymatic activities involved in the carbon and nitrogen metabolism was studied in Anabaena variabilis ATCC 29413 cells grown under a constant supply of either N, NO3 or NH+4 at different concentrations. An enhancement of protein content accompanied by a parallel decrease of carbohydrates was observed with increasing NO3 or NH+4 concentrations in the medium. In cultures containing 0.1 m M NO3 or 0.1 m M NH+4 nitrogenase (EC 1.18.6.1) activity was 74 and 66%, respectively, of that found in N2-grown cells. This activity was still present with 1 m M NO3 or 1 m M NH+4 in the medium and even with 10 m M NO3, but it was completely inhibited by 5 m M NH+4. Ferredoxin-nitrate reductase (EC 1.7.7.2) activity was detected only in NO3 grown cells and simultaneously with nitrogenase activity. Increasing concentrations of combined nitrogen in the medium, especially NH+4, promoted a concomitant decline of glutamine synthetase (EC 6.3.1.2), NADP+-isocitrate dehydrogenase (EC 1.1.1.42), and NAD+-malate dehydrogenase (EC 1.1.1.37) activities, suggesting that these enzymes play an important role in the regulation of carbon-nitrogen metabolism in cyanobacteria.  相似文献   

9.
Photosynthetic CO2-fixation, chlorophyll content, growth rate and nitrate reductase activity were used to examine the influence of NH+4-N and NO3-N on Sphagnum magellanicum cultivated under defined conditions in phytotrons. NO3-concentrations up to 322 μ M were found to be favourable. Increased NH+4 concentrations, however, resulted in growth inhibition and decreased chlorophyll content at concentrations ≧ 255 μ M ; e.g. 600 μ M NH+4 caused a 20% reduction of nitrate reductase activity and net photosynthesis. For raised bog Sphagna an improved standard nutrient solution is proposed with the following ion concentrations (μ M ): 55 Na+; 17 K+; 95 NH+4; 22 Ca2+; 22 Mg2+; 2 Fe3+; 20 Cl; 100 NO3; 57 SO2-4; 7.4 H2PO4; trace elements: A-Z solution (Hoagland) 50 μl 1000 ml−1; pH 5.8.  相似文献   

10.
The uptake of the auxin type herbicide 2,4-D into rice seedlings ( Oryza sativa L. cv. Dunghan Shali) and its effects on the K+, NH+4 and NO3 ion uptake and the K+ content were investigated at different pH values. A short incubation of the roots in 0.01 m M 2,4-D caused a marked ion uptake inhibition only at low pH. The non-auxin type herbicide benthiocarb did not produce such an inhibitory effect. Lowering of the pH in the external medium led to an increased 2,4-D uptake by the roots. These results can be explained by the increased H+ permeability of the membranes, allowing a more rapid entrance of 2,4-D into the root cells, thereby inhibiting the active ion uptake. Rice roots not subjected to 2,4-D treatment responded to H+ stress with an increased anomalous K+ uptake and a decreased K+ content. With reference to the effects of pH changes on the ion and 2,4-D uptake, possible transport mechanism of NH+4 and 2,4-D are briefly discussed.  相似文献   

11.
Abstract The interactions occuring between populations of a nitrate-respiring Vibrio sp. and autotrophic nitrifying bacteria belonging to the genera Nitrosomonas and Nitrobacter have been investigated in a compound bi-directional flow diffusion chemostat at a dilution rate of 0.025 h−1 and a temperature of 25°C. When grown under NO3 limitation, the Vibrio sp. produced NH+4 as the principal end-product of nitrate respiration, and there was a corresponding significant increase in cell numbers of the Nitrosomonas sp. population, which derived energy by the oxidation of NH+4 to NO2. Nitrite in turn was used by the Nitrobacter sp. population as an energy source with the concomitant regeneration of NO3. Under NO3 excess growth conditions the Vibrio sp. produced NO2 rather than NH+4 as the major product of NO3 dissimilation, and growth of the Nitrobacter population was stimulated as increased quantities of NO2 became available. In contrast, the Nitrosomonas sp. population declined sharply as the energy source NH+4 became limiting. These data demonstrate that defined mixed populations of obligately aerobic nitrifying bacteria and facultatively anaerobic nitrate respiring bacteria can co-exist for extended time periods and operate an internal nitrogen cycle which is energetically beneficial to both populations.  相似文献   

12.
Ammonium is known to inhibit nitrogenase activity, but at low concentrations it may support nitrogenase activity. This work describes the effect of different concentrations of NH+4 as the N-source for growth and particularly for nitrogenase-based production of hydrogen from malate, butyrate and lactate. Two different Rho-dopseudomonas strains (ATCC 23782 and ST 407) were tested. Best growth was observed in the lactate-NH+4 media. Photoproduction of H2 for cells grown with low levels (3.8 mmol/1) of NH+4 equalled that of cells grown with glutamate as N-source.  相似文献   

13.
A sand culture system was developed for growth of mycorrhizal seedlings under monoxenic conditions, with frequently renewed nutrient solution The composition of the nutrient solution resembled that of a forest soil solution, based on long-term measurements from forest sites at Soiling, northern Germany. Seedlings of Picea abies (L.) Karst. inoculated with Lactarius rufus (Scop.) Fr. were grown in this culture system. Plants developed rapidly, having almost totally mycorrhizal root systems. Nitrate at 2.7 mM in the nutrient solution and applied over a 13 week period had no negative effect on mycorrhizal development. Ammonium at 2.7 mM reduced the degree of mycorrhizal infection slightly, in such a way that the degree of mycorrhizal infection was reduced to a much less extent than the total number of root lips. Hence, the impact of NH+4 may be primarily on root development and not on mycorrhizal fungal colonization. When the concentrations of NO-3 and NH+4 used in the present study are compared to those found in forest soil solutions, NO-3 and NH4+ would not appear to influence mycorrhizal development negatively under natural conditions. Aluminium at 0.8 mM and applied over a 13 week period reduced Mg uptake into roots and needles by 52 and 64%, respectively, resulting in needle chlorosis and strongly reduced photosynthetic activity. From a comparison of this study with others, no major difference in physiological response to aluminium exposure between non-mycorrhizal seedlings and seedlings colonized with Lactarius rufus was found.  相似文献   

14.
Embryogenic cultures of cultivated carrot ( Daucus crota cv. Scarlet Nantes) were initiated from seedling hypocotyls on hormone-containing nutrient medium and from wounded zygotic embryos on hormone-free medium. Both of these cultures were maintained with continuous multiplication as unorganized, embryogenic cell masses on hormone-free medium at pH 4.0, containing NH+4 as the sole nitrogen source. When grown on hormone-free medium at pH 4.0, neither culture contained any elongated cells. Virtually all cells were densely cytoplasmic and nearly spherical. Some cells were enlarged, not densely cytoplasmic, but always spherical. When either culture was transferred to an auxin-containing medium at pH 5.8, numerous elongated cells were produced. Elongated cells were observed when either naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid was used, and whether the nitrogen source was NH+4 alone or a combination of NH+4 and NO3. Elongated cells were more abundant when a combined nitrogen source was used. When cultures containing elongated cells were transferred to and multiplied on hormone-free or hormone-containing medium buffered at pH 4.0, all elongated cells disappeared after 2 weeks. No elongated cells were observed in any of the lines tested at pH 4.0. These results clearly show that it was the pH of the culture medium and not the presence or absence of an auxin or the nitrogen source(s) that permitted or prevented cell elongation in the embryogenic cultures tested.  相似文献   

15.
In suspension cultures of Phytolacca americana L., betacyanin accumulation per cell increased with increasing total nitrogen concentration (initial NH+4:NO3 ratio 1:2) in the range 0–40 m M and then remained almost constant in the range 40–80 m M . Increasing ammonium increased growth while betacyanin accumulation was reduced. On the other hand, betacyanin accumulation increased when nitrate was increased while growth was almost constant in the concentration range examined. A time-course study of ammonium and nitrate concentration changes in the medium showed that betacyanin accumulation was associated with nitrate uptake.  相似文献   

16.
Abstract. The 15N isotope was used to compare the uptake and the assimilation of NH4+ and NO3 nitrogen in ryegrass ( Lolium perenne L.) during regrowth after cutting. Uptake of nitrate-N, expressed per plant, was at all times greater than ammonium-N uptake and assimilation decreased in roots and stubble while its assimilation was maintained at a high level in leaves. It has been suggested that ammonium assimilation is directly related to the availability of carbohydrates in the sink organ (leaves) resulting from their remobilization from the source organs (roots and stubble). Nitrate reduction decreased in all organs, while the uptake of NO3 was still high. After this first period of regrowth, nitrogen assimilation both from nitrate and ammonium increased in all the plants. Nitrate reduction capacity (expressed in μg NO3-N reduced per g D.W. per d) is 7.5 and 22.5 times greater in leaves than in stubble and roots, respectively. Therefore, nitrogen assimilation in stubble and particularly in roots was mainly dependent on ammonium nitrogen.  相似文献   

17.
In an attempt to clarify the interactions between the available nitrogen source and the photosystems in cyanobacteria, O2 exchange and fluorescence emission were monitored in spheroplasts and intact cells of the non N2-fixing cyanobacterium Phormidium laminosum (strain OH-1-p.Cl1) growing on different nitrogen sources or in the absence of nitrogen. Short-term (time scale of seconds to minutes), NH+4 addition to NO3-growing or N-starved cells and, to a minor extent, NO3addition to N-starved cells, induced state 2 transitions both in light and dark. Long term (time scale of days), the fluorescence yield of PSII relative to that of PSII at 77 K was higher in NO3- than in NH+4 growing cells, and even higher in N-starved cells. In the dark, the plastoquinone pool was more reduced in NH+4- than in NO3-growing cells. Both PSII and PSI activities and the degree of linking between both photosystems were affected in the long term, so that non-cyclic electron transport decreased in parallel to the ferredoxin requirement to assimilate each nitrogen source. Results indicate that nitrogen metabolism exerts short- and long-term control over the photosynthetic apparatus, which acclimates to the energy requirement of the available nitrogen source.  相似文献   

18.
Abstract The utilization of NO3, NO2 and NH+4 was studied in whole filaments and isolated heterocysts of Anabaena 7120 (ATCC27893). NO3- and NO2-uptake were detectable in whole filaments but not in heterocysts, whereas NH+4-uptake was detectable in both. Activity of NO3-reductase was present in cell-free extracts of whole filaments but not of heterocysts, whereas activities of NO2-reductase and glutamine synthetase were present in both. NO3-uptake and reductase activities could not be induced in heterocysts even after prolonged incubation in NO3 medium. It is suggested that NO3-metabolism in heterocysts is impaired due to a selective and irreversible loss of NO3-uptake and reductase systems resulting in the abolition of competition for molybdenum cofactor (Mo-Co) and reductant between nitrogenase and NO3-reductase, and an increase in glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase levels.  相似文献   

19.
Abstract. Net NO3 uptake by NO3 deficient Chara cells was used to calculate [NO3]c assuming that the cytoplasm occupies 10% total volume and that nitrate reduction and storage are negligible (i.e. maximum [NO3]c was calculated). A linear relationship was found between NO3 efflux and [NO3]c. There was an initial burst of NO3 efflux when NH+4 was added, followed by a slower efflux rate which matched influx rate such that net NO3 uptake was zero. Over 50% of NO3 that had been taken up in 2 h was lost within the first 5 min of NH+4 addition. The Nernst equation was used to predict the direction of the electrochemical driving force for NO3 entry. Under the experimental conditions used NO3 efflux is actively transported. The differential involvement of both NO3 influx and NO3 efflux in the regulation of NO3 uptake is discussed and a model is proposed to account for these results which envisages discrete NO3 influx and NO3 efflux carriers.  相似文献   

20.
Abstract A comparative study has been undertaken to determine the efficiency of methods for the enrichment and isolation of autotrophic nitrifying bacteria from soils and estuarine and marine sediments. Chemostat enrichments proved to be the most efficient means of isolating autotrophic NH+4 oxidisers whereas NO2 oxidising bacteria were never successfully enriched by this method. In contrast, gel enrichment and traditional batch culture enrichments of nitrifying bacteria were comparatively time consuming procedures and the degree of enrichment obtained for NH+4 oxidising bacteria never approached that obtained with continuous culture enrichments. Gel enrichments, however, because they have continuous physicochemical gradients provide qualitative advantages in that morphologically distinct types of nitrifying bacteria can be isolated from the same gel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号