首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Survivin is a member of the inhibitor of apoptosis protein (IAP) family with crucial roles in apoptosis and cell cycle regulation. Post-translational modifications (PTMs) have a ubiquitous role in the regulation of a diverse range of proteins’ cellular functions and survivin is not an exception. Phosphorylation, acetylation and ubiquitination seem to regulate survivin anti-apoptotic and mitotic roles and also its nuclear localization. In the present review we explore the role of PTMs on protein–protein interactions focused on survivin to provide new insights into the functions and cell localization of this IAP in pathophysiological conditions, which might help the envisioning of novel targeted therapies for diseases characterized by impaired survivin activity. Protein–protein interaction analysis was performed with bioinformatics tools based on published data aiming to give an integrated perspective of this IAP’s role in the cell.  相似文献   

2.
Targeting protein–protein interactions (PPIs) has become a common approach to tackle various diseases whose pathobiology is driven by their mis-regulation in important signalling pathways. Modulating PPIs has tremendous untapped therapeutic potential and different approaches can be used to modulate PPIs. Initially, therapeutic effects were mostly sought by inhibiting PPIs. However, by gaining insight in the mode of action of certain therapeutic compounds, it became clear that stabilising (i.e. enhancing) PPIs can also be useful. The latter strategy is recently gaining a lot of attention, as stabilising physiologic, or even inducing novel interactions of a target protein with E3 ubiquitin ligases forms the basis of the targeted protein degradation (TPD) approach. An emerging additional example for drug discovery based on PPI stabilisation are the 14-3-3 proteins, a family of regulatory proteins, which engages in many protein–protein interactions, some of which might become therapeutical targets.  相似文献   

3.
4.
Host-microbiome interactions play significant roles in human health and disease. Artificial intelligence approaches have been developed to better understand and predict the molecular interplay between the host and its microbiome. Here, we review recent advancements in computational methods to predict microbial effects on human cells with a special focus on protein–protein interactions. We categorize recent methods from traditional ones to more recent deep learning methods, followed by several challenges and potential solutions in structure-based approaches. This review serves as a brief guide to the current status and future directions in the field.  相似文献   

5.
6.
7.
8.
9.
Prediction of protein–protein interactions (PPIs) commonly involves a significant computational component. Rapid recent advances in the power of computational methods for protein interaction prediction motivate a review of the state-of-the-art. We review the major approaches, organized according to the primary source of data utilized: protein sequence, protein structure, and protein co-abundance. The advent of deep learning (DL) has brought with it significant advances in interaction prediction, and we show how DL is used for each source data type. We review the literature taxonomically, present example case studies in each category, and conclude with observations about the strengths and weaknesses of machine learning methods in the context of the principal sources of data for protein interaction prediction.  相似文献   

10.
Proteins with polybasic clusters bind to negatively charged phosphoinositides at the cell membrane. In this review, I have briefly discussed the types of phosphoinositides naturally found on membrane surfaces and how they recruit protein complexes for carrying out the process of signal transduction. A large number of researchers from around the world are now focusing their attention on protein–membrane binding, as these interactions have started to offer us a much better insight into the process of cell signaling. The main areas discussed in this brief review article include the phosphoinositide binding specificities of proteins and the role of their lipid binding in signaling processes downstream of membrane recruitment.  相似文献   

11.
Massive efforts to sequence cancer genomes have compiled an impressive catalogue of cancer mutations, revealing the recurrent exploitation of a handful of ‘hallmark cancer pathways’. However, unraveling how sets of mutated proteins in these and other pathways hijack pro-proliferative signaling networks and dictate therapeutic responsiveness remains challenging. Here, we show that cancer driver protein–protein interactions are enriched for additional cancer drivers, highlighting the power of physical interaction maps to explain known, as well as uncover new, disease-promoting pathway interrelationships. We hypothesize that by systematically mapping the protein–protein and genetic interactions in cancer—thereby creating Cancer Cell Maps—we will create resources against which to contextualize a patient’s mutations into perturbed pathways/complexes and thereby specify a matching targeted therapeutic cocktail.  相似文献   

12.
One of the greatest current challenges in proteomics is to develop an understanding of cellular communication and regulation processes, most of which involve noncovalent interactions of proteins with various binding partners. Mass spectrometry plays an important role in all aspects of these research efforts. This article provides a survey of mass spectrometry-based approaches for exploring protein–ligand interactions. A wide array of techniques is available, and the choice of method depends on the specific problem at hand. For example, the high-throughput screening of compound libraries for binding to a specific receptor requires different approaches than structural studies on multiprotein complexes. This review is directed to readers wishing to obtain a concise yet comprehensive overview of existing experimental techniques. Specific emphasis is placed on emerging methods that have been developed within the last few years.  相似文献   

13.
14.
  1. Download : Download high-res image (114KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
17.
Heterochromatin protein 1α (HP1α) is a protein that mediates cancer-associated processes in the cell nucleus. Proteomic experiments, reported here, demonstrate that HP1α complexes with importin α (IMPα), a protein necessary for its nuclear transport. This data is congruent with Simple Linear Motif (SLiM) analyses that identify an IMPα-binding motif within the linker that joins the two globular domains of this protein. Using molecular modeling and dynamics simulations, we develop a model of the IMPα-HP1α complex and investigate the impact of phosphorylation and genomic variants on their interaction. We demonstrate that phosphorylation of the HP1α linker likely regulates its association with IMPα, which has implications for HP1α access to the nucleus, where it functions. Cancer-associated genomic variants do not abolish the interaction of HP1α but instead lead to rearrangements where the variant proteins maintain interaction with IMPα, but with less specificity. Combined, this new mechanistic insight bears biochemical, cell biological, and biomedical relevance.  相似文献   

18.
The appropriate lipid environment is crucial for the proper function of membrane proteins. There is a tremendous variety of lipid molecules in the membrane and so far it is often unclear which component of the lipid matrix is essential for the function of a respective protein. Lipid molecules and proteins mutually influence each other; parameters such as acyl chain order, membrane thickness, membrane elasticity, permeability, lipid-domain and annulus formation are strongly modulated by proteins. More recent data also indicates that the influence of proteins goes beyond a single annulus of next-neighbor boundary lipids. Therefore, a mesoscopic approach to membrane lipid–protein interactions in terms of elastic membrane deformations has been developed. Solid-state NMR has greatly contributed to the understanding of lipid–protein interactions and the modern view of biological membranes. Methods that detect the influence of proteins on the membrane as well as direct lipid–protein interactions have been developed and are reviewed here. Examples for solid-state NMR studies on the interaction of Ras proteins, the antimicrobial peptide protegrin-1, the G protein-coupled receptor rhodopsin, and the K+ channel KcsA are discussed. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   

19.
  1. Download : Download high-res image (136KB)
  2. Download : Download full-size image
  相似文献   

20.

High-light-inducible proteins (Hlips) are single-helix transmembrane proteins that are essential for the survival of cyanobacteria under stress conditions. The model cyanobacterium Synechocystis sp. PCC 6803 contains four Hlip isoforms (HliA-D) that associate with Photosystem II (PSII) during its assembly. HliC and HliD are known to form pigmented (hetero)dimers that associate with the newly synthesized PSII reaction center protein D1 in a configuration that allows thermal dissipation of excitation energy. Thus, it is expected that they photoprotect the early steps of PSII biogenesis. HliA and HliB, on the other hand, bind the PSII inner antenna protein CP47, but the mode of interaction and pigment binding have not been resolved. Here, we isolated His-tagged HliA and HliB from Synechocystis and show that these two very similar Hlips do not interact with each other as anticipated, rather they form HliAC and HliBC heterodimers. Both dimers bind Chl and β-carotene in a quenching conformation and associate with the CP47 assembly module as well as later PSII assembly intermediates containing CP47. In the absence of HliC, the cellular levels of HliA and HliB were reduced, and both bound atypically to HliD. We postulate a model in which HliAC-, HliBC-, and HliDC-dimers are the functional Hlip units in Synechocystis. The smallest Hlip, HliC, acts as a ‘generalist’ that prevents unspecific dimerization of PSII assembly intermediates, while the N-termini of ‘specialists’ (HliA, B or D) dictate interactions with proteins other than Hlips.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号