首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
According to behavioural ecology theory, sociality evolves when the net benefits of close association with conspecifics exceed the costs. The nature and relative magnitude of the benefits and costs of sociality are expected to vary across species and habitats. When sociality is favoured, animals may form groups that range from small pair-bonded units to huge aggregations. The size and composition of social groups have diverse effects on morphology and behaviour, ranging from the extent of sexual dimorphism to brain size, and the structure of social relationships. This general argument implies that sociality has fitness consequences for individuals. However, for most mammalian species, especially long-lived animals like primates, there are sizable gaps in the chain of evidence that links sociality and social bonds to fitness outcomes. These gaps reflect the difficulty of quantifying the cumulative effects of behavioural interactions on fitness and the lack of information about the nature of social relationships among individuals in most taxa. Here, I review what is known about the reproductive consequences of sociality for mammals.  相似文献   

2.
Understanding the evolution of sociality in humans and other species requires understanding how selection on social behaviour varies with group size. However, the effects of group size are frequently obscured in the theoretical literature, which often makes assumptions that are at odds with empirical findings. In particular, mechanisms are suggested as supporting large‐scale cooperation when they would in fact rapidly become ineffective with increasing group size. Here we review the literature on the evolution of helping behaviours (cooperation and altruism), and frame it using a simple synthetic model that allows us to delineate how the three main components of the selection pressure on helping must vary with increasing group size. The first component is the marginal benefit of helping to group members, which determines both direct fitness benefits to the actor and indirect fitness benefits to recipients. While this is often assumed to be independent of group size, marginal benefits are in practice likely to be maximal at intermediate group sizes for many types of collective action problems, and will eventually become very small in large groups due to the law of decreasing marginal returns. The second component is the response of social partners on the past play of an actor, which underlies conditional behaviour under repeated social interactions. We argue that under realistic conditions on the transmission of information in a population, this response on past play decreases rapidly with increasing group size so that reciprocity alone (whether direct, indirect, or generalised) cannot sustain cooperation in very large groups. The final component is the relatedness between actor and recipient, which, according to the rules of inheritance, again decreases rapidly with increasing group size. These results explain why helping behaviours in very large social groups are limited to cases where the number of reproducing individuals is small, as in social insects, or where there are social institutions that can promote (possibly through sanctioning) large‐scale cooperation, as in human societies. Finally, we discuss how individually devised institutions can foster the transition from small‐scale to large‐scale cooperative groups in human evolution.  相似文献   

3.
Reproductive partitioning is a key component of social organization in groups of cooperative organisms. In colonies of permanently social spiders of the genus Stegodyphus less than half of the females reproduce, while all females, including nonreproducers, perform suicidal allo‐maternal care. Some theoretical models suggest that reproductive skew is a result of contest competition within colonies, leading to size hierarchies where only the largest females become reproducers. We investigated the effect of competition on within‐group body size variation over six months in S. dumicola, by manipulating food level and colony size. We found no evidence that competition leads to increased size asymmetry within colonies, suggesting that contest competition may not be the proximate explanation for reproductive skew. Within‐colony body size variation was high already in the juvenile stage, and did not increase over the course of the experiment, suggesting that body size variation is shaped at an early stage. This might facilitate task specialization within colonies and ensure colony‐level reproductive output by early allocation of reproductive roles. We suggest that reproductive skew in social spiders may be an adaptation to sociality selected through inclusive fitness benefits of allo‐maternal care as well as colony‐level benefits maximizing colony survival and production.  相似文献   

4.
Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.  相似文献   

5.
While ecological causes of sociality (or group living) have been identified, proximate mechanisms remain less clear. Recently, close connections between sociality, glucocorticoid hormones (cort) and fitness have been hypothesized. In particular, cort levels would reflect a balance between fitness benefits and costs of group living, and therefore baseline cort levels would vary with sociality in a way opposite to the covariation between sociality and fitness. However, since reproductive effort may become a major determinant of stress responses (i.e., the cort–adaptation hypothesis), cort levels might also be expected to vary with sociality in a way similar to the covariation between sociality and fitness. We tested these expectations during three years in a natural population of the communally rearing degu, Octodon degus. During each year we quantified group membership, measured fecal cortisol metabolites (a proxy of baseline cort levels under natural conditions), and estimated direct fitness. We recorded that direct fitness decreases with group size in these animals. Secondly, neither group size nor the number of females (two proxies of sociality) influenced mean (or coefficient of variation, CV) baseline cortisol levels of adult females. In contrast, cortisol increased with per capita number of offspring produced and offspring surviving to breeding age during two out of three years examined. Together, our results imply that variation in glucocorticoid hormones is more linked to reproductive challenge than to the costs of group living. Most generally, our study provided independent support to the cort–adaptation hypothesis, according to which reproductive effort is a major determinant, yet temporally variable, influence on cort–fitness covariation.  相似文献   

6.
Attempts to explain differences in the size and structure of primate groups have argued that they are a consequence of variation in the intensity of feeding competition caused by contrasts in food distribution. However, although feeding competition can limit the size of female groups, many other factors affect the costs and the benefits of sociality to females and contribute to differences in group size. Moreover, interspecific differences in social relationships between females, in female philopatry, and in kinship between group members appear to be more closely associated with variation in life‐history parameters, reproductive strategies, and phylogeny than with contrasts in food distribution or feeding competition. The mismatch between predictions of socioecological theory and observed variation in primate social behavior has led to protracted arguments about the future of primate socioecology. We argue that future attempts to understand the diversity of primate societies need to be based on an approach that explores separate explanations for different components of social organization, combines ecological and phylogenetic information, and integrates research on primates with similar studies of other groups of mammals. © 2012 Wiley Periodicals, Inc.  相似文献   

7.

Background  

Cooperative hunting and foraging in spiders is rare and prone to cheating such that the actions of selfish individuals negatively affect the whole group. The resulting social dilemma may be mitigated by kin selection since related individuals lose indirect fitness benefits by acting selfishly. Indeed, cooperation with genetic kin reduces the disadvantages of within-group competition in the subsocial spider Stegodyphus lineatus, supporting the hypothesis that high relatedness is an important pre-adaptation in the transition to sociality in spiders. In this study we examined the consequences of group size and relatedness on cooperative feeding in the subsocial spider S. tentoriicola, a species suggested to be at the transition to permanent sociality.  相似文献   

8.
The evolution of cooperation requires benefits of group living to exceed costs. Hence, some components of fitness are expected to increase with increasing group size, whereas others may decrease because of competition among group members. The social spiders provide an excellent system to investigate the costs and benefits of group living: they occur in groups of various sizes and individuals are relatively short-lived, therefore life history traits and Lifetime Reproductive Success (LRS) can be estimated as a function of group size. Sociality in spiders has originated repeatedly in phylogenetically distant families and appears to be accompanied by a transition to a system of continuous intra-colony mating and extreme inbreeding. The benefits of group living in such systems should therefore be substantial. We investigated the effect of group size on fitness components of reproduction and survival in the social spider Stegodyphus dumicola in two populations in Namibia. In both populations, the major benefit of group living was improved survival of colonies and late-instar juveniles with increasing colony size. By contrast, female fecundity, female body size and early juvenile survival decreased with increasing group size. Mean individual fitness, estimated as LRS and calculated from five components of reproduction and survival, was maximized for intermediate- to large-sized colonies. Group living in these spiders thus entails a net reproductive cost, presumably because of an increase in intra-colony competition with group size. This cost is traded off against survival benefits at the colony level, which appear to be the major factor favouring group living. In the field, many colonies occur at smaller size than expected from the fitness curve, suggesting ecological or life history constraints on colony persistence which results in a transient population of relatively small colonies.  相似文献   

9.
This paper introduces a theme issue presenting the latest developments in research on the impacts of sociality on health and fitness. The articles that follow cover research on societies ranging from insects to humans. Variation in measures of fitness (i.e. survival and reproduction) has been linked to various aspects of sociality in humans and animals alike, and variability in individual health and condition has been recognized as a key mediator of these relationships. Viewed from a broad evolutionary perspective, the evolutionary transitions from a solitary lifestyle to group living have resulted in several new health-related costs and benefits of sociality. Social transmission of parasites within groups represents a major cost of group living, but some behavioural mechanisms, such as grooming, have evolved repeatedly to reduce this cost. Group living also has created novel costs in terms of altered susceptibility to infectious and non-infectious disease as a result of the unavoidable physiological consequences of social competition and integration, which are partly alleviated by social buffering in some vertebrates. Here, we define the relevant aspects of sociality, summarize their health-related costs and benefits, and discuss possible fitness measures in different study systems. Given the pervasive effects of social factors on health and fitness, we propose a synthesis of existing conceptual approaches in disease ecology, ecological immunology and behavioural neurosciences by adding sociality as a key factor, with the goal to generate a broader framework for organismal integration of health-related research.  相似文献   

10.
1. Understanding how variation in fitness relates to variation in group living remains critical to determine whether this major aspect of social behaviour is currently adaptive. 2. Available evidence in social mammals aimed to examine this issue remains controversial. Studies show positive (i.e. potentially adaptive), neutral or even negative fitness effects of group living. 3. Attempts to explain this variation rely on intrinsic and extrinsic factors to social groups. Thus, relatively more positive fitness effects are predicted in singularly breeding as opposed to plural breeding species. Fitness effects of sociality in turn may depend on ecological conditions (i.e. extrinsic factors) that influence associated benefits and costs. 4. We used meta-analytic tools to review how breeding strategy or ecological conditions influence the effect size associated with direct fitness-sociality relationships reported in the mammalian literature. Additionally, we determined how taxonomic affiliation of species studied, different fitness and sociality measures used, and major climatic conditions of study sites explained any variation in direct fitness effect size. 5. We found group living had modest, yet positive effects on direct fitness. This generally adaptive scenario was contingent not only upon breeding strategy and climate of study sites, but also on fitness measures examined. Thus, positive and significant effects characterized singular as opposed to plural breeding strategies. 6. We found more positive fitness effects on studies conducted in tropical as opposed to temperate or arid climates. More positive and significant effects were noted on studies that relied on group fecundity, male fecundity and offspring survival as measures of fitness. 7. To conclude, direct fitness consequences of mammalian group living are driven by interspecific differences in breeding strategy and climate conditions. Other factors not examined in this study, namely individual variation in direct and indirect fitness benefits and potential interactions between social and ecological conditions, may be important and require further studies.  相似文献   

11.
The greater ani (Crotophaga major), a Neotropical cuckoo, exhibits an unusual breeding system in which several socially monogamous pairs lay eggs in a single nest and contribute care to the communal clutch. Cooperative nesting is costly-females compete for reproduction by ejecting each other's eggs-but the potential direct or indirect fitness benefits that might accrue to group members have not been identified. In this study, I used molecular genotyping to quantify patterns of genetic relatedness and individual reproductive success within social groups in a single colour-banded population. Microsatellite analysis of 122 individuals in 49 groups revealed that group members are not genetic relatives. Group size was strongly correlated with individual reproductive success: solitary pairs were extremely rare and never successful, and nests attended by two pairs were significantly more likely to be depredated than were nests attended by three pairs. Egg loss, a consequence of reproductive competition, was greater in large groups and disproportionately affected females that initiated laying. However, early-laying females compensated for egg losses by laying larger clutches, and female group members switched positions in the laying order across nesting attempts. The greater ani, therefore, appears to be one of the few species in which cooperative breeding among unrelated individuals is favoured by direct, shared benefits that outweigh the substantial costs of reproductive competition.  相似文献   

12.
Hamilton''s rule is a central theorem of inclusive fitness (kin selection) theory and predicts that social behaviour evolves under specific combinations of relatedness, benefit and cost. This review provides evidence for Hamilton''s rule by presenting novel syntheses of results from two kinds of study in diverse taxa, including cooperatively breeding birds and mammals and eusocial insects. These are, first, studies that empirically parametrize Hamilton''s rule in natural populations and, second, comparative phylogenetic analyses of the genetic, life-history and ecological correlates of sociality. Studies parametrizing Hamilton''s rule are not rare and demonstrate quantitatively that (i) altruism (net loss of direct fitness) occurs even when sociality is facultative, (ii) in most cases, altruism is under positive selection via indirect fitness benefits that exceed direct fitness costs and (iii) social behaviour commonly generates indirect benefits by enhancing the productivity or survivorship of kin. Comparative phylogenetic analyses show that cooperative breeding and eusociality are promoted by (i) high relatedness and monogamy and, potentially, by (ii) life-history factors facilitating family structure and high benefits of helping and (iii) ecological factors generating low costs of social behaviour. Overall, the focal studies strongly confirm the predictions of Hamilton''s rule regarding conditions for social evolution and their causes.  相似文献   

13.
In group living animals, especially among primates, there is consistent evidence that high-ranking males gain a higher reproductive output than low-ranking males. Primate studies have shown that male coalitions and sociality can impact male fitness; however, it remains unclear whether males could potentially increase their fitness by preferentially supporting and socializing with females. Here we investigate patterns of male interventions and the effect of coalitions and sociality on male fitness in rhesus macaques (Macaca mulatta) with particular focus on male-female interactions. We combined behavioural observations collected on Cayo Santiago with genetic data analysed for male reproductive output and relatedness. Our results revealed that the ten top-ranking males provided the majority of all male support observed. In contrast to other primates, male rhesus macaques mainly formed all-down coalitions suggesting that coalitions are less likely used to enhance male dominance. Males supporting females during and before their likely conception were not more likely to fertilize those females. We also found no evidence that males preferably support their offspring or other close kin. Interestingly, the most important predictor of male support was sociality, since opponents sharing a higher sociality index with a given male were more likely to be supported. Furthermore, a high sociality index of a given male-female dyad resulted in a higher probability of paternity. Overall, our results strengthen the evidence that sociality affects fitness in male primates, but also suggest that in species in which males queue for dominance, it is less likely that males derive fitness benefits from coalitions.  相似文献   

14.
The degree to which group members share reproduction is dictated by both within-group (e.g. group size and composition) and between-group (e.g. density and position of neighbours) characteristics. While many studies have investigated reproductive patterns within social groups, few have simultaneously explored how within-group and between-group social structure influence these patterns. Here, we investigated how group size and composition, along with territory density and location within the colony, influenced parentage in 36 wild groups of a colonial, cooperatively breeding fish Neolamprologus pulcher. Dominant males sired 76% of offspring in their group, whereas dominant females mothered 82% of offspring in their group. Subordinate reproduction was frequent, occurring in 47% of sampled groups. Subordinate males gained more paternity in groups located in high-density areas and in groups with many subordinate males. Dominant males and females in large groups and in groups with many reproductively mature subordinates had higher rates of parentage loss, but only at the colony edge. Our study provides, to our knowledge, the first comprehensive quantification of reproductive sharing among groups of wild N. pulcher, a model species for the study of cooperation and social behaviour. Further, we demonstrate that the frequency of extra-pair parentage differs across small social and spatial scales.  相似文献   

15.
Sociality in mammals is often viewed as a dichotomy, with sociality contrasted against solitariness. However, variation within these broad categories may have strong effects on individual fitness. For example, reproductive suppression of social subordinates is generally associated with group living, but suppression may also occur in solitary species if the behavioral and physiological processes involved can be modulated by the demographic environment. To investigate whether behavioral and physiological traits that normally are associated with group living might be latent even in a solitary species, we explored the level of sociality and investigated causes and mechanisms of reproductive failure in female wolverines Gulo gulo that experienced a highly aggregated social environment in captivity. Behaviorally, females showed low levels of aggression and intermediate levels of social interactions. Reproductive failure seemed to have been related to low social rank and to have occurred between ovulation and implantation in 13 out of 15 breeding attempts. However, three of eight females observed to mate produced offspring, indicating that no individual female fully managed to monopolize breeding. Reproductive failure was not related to elevated levels of glucocorticoid stress hormones. Rather, elevated glucocorticoid levels during the mating season were associated with successful reproduction. We suggest that social tendencies and physiological mechanisms mediating reproductive suppression may be viewed as reaction norms to the social environment. We further suggest that the social flexibility of solitary carnivores might be greater than is commonly observed, due to ecological constraints that may limit aggregation.  相似文献   

16.
Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female''s, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory.  相似文献   

17.
Wolves, Canis lupus, routinely live in large packs that include unrelated individuals and mature offspring. Studies show that individual wolves that live in large packs suffer reduced foraging returns. Therefore, group hunting and group living (sociality) in wolves is generally thought to be favoured by indirect fitness gains accrued through kin-directed altruism. However, we show that kin-directed altruism cannot account for groups that include mature offspring or unrelated individuals. We also present an analysis that incorporates a previously ignored feature of wolf foraging ecology, namely the loss of food to scavenging ravens, Corvus corax. By accounting for this process, we show that individuals in large packs do indeed accrue foraging advantages. In the hypothetical absence of this scavenging pressure, an individual would maximize its rate of prey acquisition, and minimize its risk of energetic shortfall, by foraging with just one other individual. However, incorporating the effect of scavenging by ravens leads to a dramatic increase in the predicted group size. Our analysis indicates that per capita gains are highest in the largest observed packs. The greater food-sharing costs in a larger pack are more than offset by smaller losses to scavengers and increased rates of prey acquisition. Thus, in contrast with previous interpretations, the selfish benefits of social foraging appear to contribute to the maintenance of sociality in wolves after all. We explore whether such benefits favour group living in various social carnivores that hunt large prey and are thus vulnerable to scavenging.  相似文献   

18.
Group membership can confer both advantages and disadvantages to growth in juvenile fishes. The balance between costs and benefits of social interactions can shift depending on such factors as the composition of the group (density and size disparity) and the availability of food. We examined the effect of these factors on absolute growth and growth depensation in juvenile sablefish, Anoplopoma fimbria. Increasing density and increasing size disparity had little influence on absolute growth rates of juvenile sablefish and the effects of these social factors were not modified by ration level. In experiments testing density effects, absolute growth did not differ among groups of 1, 3, or 10 fish held at high rations, but at low rations single fish exhibited a different pattern of size-dependent growth compared to fish in groups. In experiments testing disparity effects, absolute growth did not differ between groups with an even size distribution and groups with a mixed size distribution. The relative size of an individual within a group, i.e., small, medium, or large, also did not modify growth, despite evidence of higher chasing behavior in mixed size distributions. Although the growth of small fish was not diminished in the presence of large fish, negative impacts of size disparity were expressed in high levels of cannibalism, which occurred in 42% of groups with a mixed size distribution. Significant growth depensation over time occurred in the density experiment, but not in the size disparity experiment, possibly due to the shorter duration of the latter experiment. We suggest that growth depensation was generated by individual variability in growth capacity rather than social effects on growth rates. Schooling behavior, measured by group cohesion indices, increased with fish size and was higher in groups with an even vs. a mixed size distribution. These results for sablefish are consistent with other schooling species in which growth variability is determined by exploitative competition and/or genetic variability in growth capacity rather than interference competition.  相似文献   

19.
In spite of its intrinsic evolutionary instability, altruistic behavior in social groups is widespread in nature, spanning from organisms endowed with complex cognitive abilities to microbial populations. In this study, we show that if social individuals have an enhanced tendency to form groups and fitness increases with group cohesion, sociality can evolve and be maintained in the absence of actively assortative mechanisms such as kin recognition or nepotism toward other carriers of the social gene. When explicitly taken into account in a game‐theoretical framework, the process of group formation qualitatively changes the evolutionary dynamics with respect to games played in groups of constant size and equal grouping tendencies. The evolutionary consequences of the rules underpinning the group size distribution are discussed for a simple model of microbial aggregation by differential attachment, indicating a way to the evolution of sociality bereft of peer recognition.  相似文献   

20.
Measurement of reproductive skew in social groups is fundamentalto understanding the evolution and maintenance of sociality,as it determines the immediate fitness benefits to helpers ofstaying and helping in a group. However, there is a lack ofstudies in natural populations that provide reliable measuresof reproductive skew and the correlates of reproductive success,particularly in vertebrates. We present results of a study thatuses a combination of field and genetic (microsatellite) dataon a cooperatively breeding mongoose, the meerkat (Suricatasuricatta). We sampled 458 individuals from 16 groups at twosites and analyzed parentage of pups in 110 litters with upto 12 microsatellites. We show that there is strong reproductiveskew in favor of dominants, but that the extent of skew differsbetween the sexes and between different sites. Our data suggestthat the reproductive skew arises from incest avoidance andreproductive suppression of the subordinates by the dominants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号