首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
FOXO1 is an important downstream mediator of the insulin signaling pathway. In the fed state, elevated insulin phosphorylates FOXO1 via AKT, leading to its nuclear exclusion and degradation. A reduction in nuclear FOXO1 levels then leads to suppression of hepatic glucose production. However, the mechanism leading to expression of Foxo1 gene in the fasted state is less clear. We found that Foxo1 mRNA and FOXO1 protein levels of Foxo1 were increased significantly in the liver of mice after 16 h of fasting. Furthermore, dibutyrl cAMP stimulated the expression of Foxo1 at both mRNA and protein level in hepatocytes. Because cAMP-PKA regulates hepatic glucose production through cAMP-response element-binding protein co-activators, we depleted these co-activators using adenoviral shRNAs. Interestingly, only depletion of co-activator P300 resulted in the decrease of Foxo1 mRNA and FOXO1 protein levels. In addition, inhibition of histone acetyltransferase activity of P300 significantly decreased hepatic Foxo1 mRNA and FOXO1 protein levels in fasted mice, as well as fasting blood glucose levels. By characterization of Foxo1 gene promoter, P300 regulates the Foxo1 gene expression through the binding to tandem cAMP-response element sites in the proximal promoter region of Foxo1 gene.  相似文献   

4.
5.
6.
Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides −496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides −308/−235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (−264/−259) and investigated whether HIF-1 is associated with insulin regulation of “endogenous” hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Triiodothyronine (T3) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T3/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T3 at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T3-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T3 response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T3 responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T3/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.  相似文献   

15.
16.
MiRNAs are fine‐tuning modifiers of skeletal muscle regulation, but knowledge of their hormonal control is lacking. We used a co‐twin case–control study design, that is, monozygotic postmenopausal twin pairs discordant for estrogen‐based hormone replacement therapy (HRT) to explore estrogen‐dependent skeletal muscle regulation via miRNAs. MiRNA profiles were determined from vastus lateralis muscle of nine healthy 54–62‐years‐old monozygotic female twin pairs discordant for HRT (median 7 years). MCF‐7 cells, human myoblast cultures and mouse muscle experiments were used to confirm estrogen's causal role on the expression of specific miRNAs, their target mRNAs and proteins and finally the activation of related signaling pathway. Of the 230 miRNAs expressed at detectable levels in muscle samples, qPCR confirmed significantly lower miR‐182, miR‐223 and miR‐142‐3p expressions in HRT using than in their nonusing co‐twins. Insulin/IGF‐1 signaling emerged one common pathway targeted by these miRNAs. IGF‐1R and FOXO3A mRNA and protein were more abundantly expressed in muscle samples of HRT users than nonusers. In vitro assays confirmed effective targeting of miR‐182 and miR‐223 on IGF‐1R and FOXO3A mRNA as well as a dose‐dependent miR‐182 and miR‐223 down‐regulations concomitantly with up‐regulation of FOXO3A and IGF‐1R expression. Novel finding is the postmenopausal HRT‐reduced miRs‐182, miR‐223 and miR‐142‐3p expression in female skeletal muscle. The observed miRNA‐mediated enhancement of the target genes' IGF‐1R and FOXO3A expression as well as the activation of insulin/IGF‐1 pathway signaling via phosphorylation of AKT and mTOR is an important mechanism for positive estrogen impact on skeletal muscle of postmenopausal women.  相似文献   

17.
18.
19.
RNA-interference-driven loss of function in specific tissues in vivo should permit analysis of gene function in temporally and spatially defined contexts. However, delivery of efficient short hairpin RNA (shRNA) to target tissues in vivo remains problematic. Here, we demonstrate that efficiency of polyethylenimine (PEI)-delivered shRNA depends on the regulatory sequences used, both in vivo and in vitro. When tested in vivo, silencing of a luciferase target gene by shRNA produced from a hybrid construct composed of the CMV enhancer/promoter placed immediately upstream of an H1 promoter (50%) exceeds that obtained with the H1 promoter alone (20%). In contrast, in NIH 3T3 cells, the H1 promoter was more efficient than the hybrid construct (75 versus 60% inhibition of target gene expression, respectively). To test CMV-H1 shRNA efficiency against an endogenous gene in vivo, we used shRNA against thyroid hormone receptor α1 (TRα1). When vectorized in the mouse brain, the hybrid construct strongly derepressed CyclinD1-luciferase reporter gene expression, CyclinD1 being a negatively regulated thyroid hormone target gene. We conclude that promoter choice affects shRNA efficiency distinctly in different in vitro and in vivo situations and that a hybrid CMV-H1 construct is optimal for shRNA delivery in the mouse brain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号