首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
芳香族化合物种类丰富,在多个行业具有广泛的用途,需求量大。通过构建微生物细胞工厂合成芳香族化合物具有独特的优势和工业化应用前景,其中酵母底盘因其清晰的遗传背景、完善的基因操作工具以及成熟的工业发酵体系等优势,常被用于构建细胞工厂。目前改造酵母底盘生产芳香族化合物的研究取得了一系列进展,并针对关键问题提出了一些可行的解决策略。针对酵母合成芳香族化合物的策略与挑战,从芳香族化合物合成路径改造、多样化碳源利用及转运系统改造、基因组多靶点改造、特殊酵母底盘及混菌系统构建、合成生物学高通量技术的应用这五个方面进行系统地梳理和阐述,为生产芳香族化合物的酵母底盘构建与改造提供思路。  相似文献   

3.
As important oxygenic photoautotrophs, cyanobacteria are also generally considered as one of the most promising microbial chassis for photosynthetic biomanufacturing. Diverse synthetic biology and metabolic engineering approaches have been developed to enable the efficient harnessing of carbon and energy flow toward the synthesis of desired metabolites in cyanobacterial cell factories. Glycogen metabolism works as the most important natural carbon sink mechanism and reserve carbon source, storing a large portion of carbon and energy from the Calvin-Benson-Bassham (CBB) cycle, and thus is traditionally recognized as a promising engineering target to optimize the efficacy of cyanobacterial cell factories. Multiple strategies and approaches have been designed and adopted to engineer glycogen metabolism in cyanobacteria, leading to the successful regulation of glycogen synthesis and storage contents in cyanobacteria cells. However, disturbed glycogen metabolism results in weakened cellular physiological functionalities, thereby diminishing the robustness of metabolism. In addition, the effects of glycogen removal as a metabolic engineering strategy to enhance photosynthetic biosynthesis are still controversial. This review focuses on the efforts and effects of glycogen metabolism engineering on the physiology and metabolism of cyanobacterial chassis strains and cell factories. The perspectives and prospects provided herein are expected to inspire novel strategies and tools to achieve ideal control over carbon and energy flow for biomanufacturing.  相似文献   

4.
枯草芽孢杆菌Bacillus subtilis是微生物生理生化机理研究的模式菌株,也是工业应用生产小分子化合物、大宗化学品、工业酶、药物及保健品等生物制剂的良好底盘细胞。近些年,研究枯草芽孢杆菌的合成生物技术和代谢工程方法日新月异,为利用其作为底盘细胞生产目标产品提供了良好的工具和理论参考。文中综述了利用枯草芽孢杆菌为细胞工厂,在代谢改造中通过调节全局调控因子,基因组精简及优化,多位点、多维调控,自身生物传感动态调控,膜蛋白工程等方法,系统调控优化菌株;在蛋白质试剂生产改造中,通过优化基因启动子、蛋白质信号肽、菌株自身蛋白质分泌元件,构建无化学诱导剂表达系统等方法,优化生产菌株。另外,文中对未来进一步针对优化枯草芽孢杆菌进行工业生产中需要注意和重点关注的问题、方向进行展望。  相似文献   

5.
Engineering synthetic minimal cells provide a controllable chassis for studying the biochemical principles of natural life, increasing our understanding of complex biological processes. Recently, synthetic cell engineering has enabled communication between both natural live cells and other synthetic cells.A system such as these enable studying interactions between populations of cells, both natural and artificial, and engineering small molecule cell communication protocols for a variety of basic research and practical applications. In this review, we summarize recent progress in engineering communication between synthetic and natural cells, and we speculate about the possible future directions of this work.  相似文献   

6.
李杨  陈涛  赵学明 《生命科学》2011,(9):838-843
微生物基因组简化是合成生物学研究热点之一。基因组的适度精简可使细胞代谢途径得以优化,改善细胞对底物、能量的利用效率,大大提高细胞生理性能的预测性和可控性。基因组简化细胞将为生物技术的应用提供理想的底盘细胞。同顾了构建基因组简化细胞的研究策略、研究方法及一些模式生物相关研究进展,总结了基因组简化研究所面临的问题及解决办法,对基因组减小化研究发展趋势前景进行了展望。  相似文献   

7.
《Biotechnology advances》2017,35(8):1022-1031
Microbial production of monoterpenes is often limited by their cytotoxicity and in vivo conversion. Therefore, alleviating cytotoxicity and reducing conversion by chassis engineering are highly desirable. On the other hand, engineering key enzymes is also critical for improving monoterpenes production through facilitating the biosynthesis process. Here we critically review recent advances in cytotoxicity alleviation, reducing in vivo conversion, selecting geranyl diphosphate synthase and engineering monoterpene synthases. These achievements would lead to the development of superior chassis with improved tolerance to cytotoxicity and rationally tailored metabolites profiles to improve titer, yield and productivity for the production of monoterpenes by microbial cells.  相似文献   

8.
Marine macroalgae have huge potential as feedstocks for production of a wide spectrum of chemicals used in biofuels, biomaterials, and bioactive compounds. Harnessing macroalgae in these ways could promote wellbeing for people while mitigating climate change and environmental destruction linked to use of fossil fuels. Microorganisms play pivotal roles in converting macroalgae into valuable products, and metabolic engineering technologies have been developed to extend their native capabilities. This review showcases current achievements in engineering the metabolisms of various microbial chassis to convert red, green, and brown macroalgae into bioproducts. Unique features of macroalgae, such as seasonal variation in carbohydrate content and salinity, provide the next challenges to advancing macroalgae-based biorefineries. Three emerging engineering strategies are discussed here: (1) designing dynamic control of metabolic pathways, (2) engineering strains of halophilic (salt-tolerant) microbes, and (3) developing microbial consortia for conversion. This review illuminates opportunities for future research communities by elucidating current approaches to engineering microbes so they can become cell factories for the utilization of macroalgae feedstocks.  相似文献   

9.
自20世纪90年代初期诞生以来,代谢工程历经了30年的快速发展。作为代谢工程的首选底盘细胞之一,酿酒酵母细胞工厂已被广泛应用于大量大宗化学品和新型高附加值生物活性物质的生物制造,在能源、医药和环境等领域取得了巨大的突破。近年来,合成生物学、生物信息学以及机器学习等相关技术也极大地促进了代谢工程的技术发展和应用。文中回顾了近30年来酿酒酵母代谢工程重要的技术发展,首先总结了经典代谢工程的常用方法和策略,以及在此基础上发展而来的系统代谢工程和合成生物学驱动的代谢工程技术。最后结合最新技术发展趋势,展望了未来酿酒酵母代谢工程发展的新方向。  相似文献   

10.
生物乙醇是极具应用潜力和代表性的生物能源产品之一。以蓝细菌为光合平台,利用二氧化碳和太阳能直接进行乙醇合成可以同时起到降低二氧化碳排放和提供可再生能源的效果,具有重要的研究与应用价值。本文回顾了蓝细菌乙醇光合细胞工厂相关技术的发展历程和现状,从途径优化、底盘选择和代谢工程策略等层面对其最新进展和所遇到的问题进行了总结介绍,并对该技术未来发展方向进行了展望。  相似文献   

11.
12.
The junction of bioelectrochemical systems and synthetic biology opens the door to many potentially groundbreaking technologies. When developing these possibilities, choosing the correct chassis organism can save a great deal of engineering effort and, indeed, can mean the difference between success and failure. Choosing the correct chassis for a specific application requires a knowledge of the metabolic potential of the candidate organisms, as well as a clear delineation of the traits, required in the application. In this review, we will explore the metabolic and electrochemical potential of a single genus, Marinobacter. We will cover its strengths, (salt tolerance, biofilm formation and electrochemical potential) and weaknesses (insufficient characterization of many strains and a less developed toolbox for genetic manipulation) in potential synthetic electromicrobiology applications. In doing so, we will provide a roadmap for choosing a chassis organism for bioelectrochemical systems.  相似文献   

13.
Corynebacterium glutamicum is a versatile chassis which has been widely used to produce various amino acids and organic acids. In this study, we report the development of an efficient C. glutamicum strain to produce 1,3-propanediol (1,3-PDO) from glucose and xylose by systems metabolic engineering approaches, including (1) construction and optimization of two different glycerol synthesis modules; (2) combining glycerol and 1,3-PDO synthesis modules; (3) reducing 3-hydroxypropionate accumulation by clarifying a mechanism involving 1,3-PDO re-consumption; (4) reducing the accumulation of toxic 3-hydroxypropionaldehyde by pathway engineering; (5) engineering NADPH generation pathway and anaplerotic pathway. The final engineered strain can efficiently produce 1,3-PDO from glucose with a titer of 110.4 g/L, a yield of 0.42 g/g glucose, and a productivity of 2.30 g/L/h in fed-batch fermentation. By further introducing an optimized xylose metabolism module, the engineered strain can simultaneously utilize glucose and xylose to produce 1,3-PDO with a titer of 98.2 g/L and a yield of 0.38 g/g sugars. This result demonstrates that C. glutamicum is a potential chassis for the industrial production of 1,3-PDO from abundant lignocellulosic feedstocks.  相似文献   

14.
Oils and oleochemicals produced by microbial cells offer an attractive alternative to petroleum and food-crop derived oils for the production of transport fuel and oleochemicals. An emerging candidate for industrial single cell oil production is the oleaginous yeast Lipomyces starkeyi. This yeast is capable of accumulating storage lipids to concentrations greater than 60% of the dry cell weight. From the perspective of industrial biotechnology L. starkeyi is an excellent chassis for single-cell oil and oleochemical production as it can use a wide variety of carbon and nitrogen sources as feedstock. The strain has been used to produce lipids from hexose and pentose sugars derived from cellulosic hydrolysates as well as crude glycerol and even sewage sludge. L. starkeyi also produces glucanhydrolases that have a variety of industrial applications and displays potential to be employed for bioremediation. Despite its excellent properties for biotechnology applications, adoption of L. starkeyi as an industrial chassis has been hindered by the difficulty of genetically manipulating the strain. This review will highlight the industrial potential of L. starkeyi as a chassis for the production of lipids, oleochemicals and other biochemicals. Additionally, we consider progress and challenges in engineering this organism for industrial applications.  相似文献   

15.
合成生物学与代谢工程   总被引:5,自引:0,他引:5  
随着DNA重组技术的日趋成熟,代谢工程的理论和应用已经得到了迅速发展。合成生物学是近年来蓬勃发展的一门新兴学科,在许多领域都具有重要的应用。以下从改造细胞代谢的关键因子、代谢途径的调节和宿主细胞与代谢途径构建的关系等方面详细讨论了合成生物学的最新进展和合成生物学在代谢工程领域的应用。  相似文献   

16.
7-脱氢胆甾醇合成功能模块与底盘细胞的适配性   总被引:1,自引:0,他引:1  
利用合成生物技术生产7-脱氢胆甾醇的挑战性在于获得合成功能模块与底盘细胞的适配关系。从更换不同调控强度的启动子和不同改造的酵母底盘两方面,对二者的适配性进行研究,以增加7-脱氢胆甾醇产量:过表达酵母固醇合成途径中的内源基因tHMGR和ERG1,敲除非必需基因ERG6和ERG5以抑制酵母固醇向麦角固醇的转化,得到改造后的酵母底盘SyBE_000956;利用由强到弱依次为TDH3p、PGK1p和TDH1p的启动子,引入人源C-24还原酶基因DHCR24,构建3种强度的外源功能模块,并分别导入3种底盘中,得到9种人工合成细胞。结果表明,TDH3p调控的功能模块与底盘细胞SyBE_000956具备较好的适配性,实现7-脱氢胆甾醇产量的提高。为后续的适配性研究提供了理性设计的依据。  相似文献   

17.
A systems-level approach for metabolic engineering of yeast cell factories   总被引:1,自引:0,他引:1  
The generation of novel yeast cell factories for production of high-value industrial biotechnological products relies on three metabolic engineering principles: design, construction, and analysis. In the last two decades, strong efforts have been put on developing faster and more efficient strategies and/or technologies for each one of these principles. For design and construction, three major strategies are described in this review: (1) rational metabolic engineering; (2) inverse metabolic engineering; and (3) evolutionary strategies. Independent of the selected strategy, the process of designing yeast strains involves five decision points: (1) choice of product, (2) choice of chassis, (3) identification of target genes, (4) regulating the expression level of target genes, and (5) network balancing of the target genes. At the construction level, several molecular biology tools have been developed through the concept of synthetic biology and applied for the generation of novel, engineered yeast strains. For comprehensive and quantitative analysis of constructed strains, systems biology tools are commonly used and using a multi-omics approach. Key information about the biological system can be revealed, for example, identification of genetic regulatory mechanisms and competitive pathways, thereby assisting the in silico design of metabolic engineering strategies for improving strain performance. Examples on how systems and synthetic biology brought yeast metabolic engineering closer to industrial biotechnology are described in this review, and these examples should demonstrate the potential of a systems-level approach for fast and efficient generation of yeast cell factories.  相似文献   

18.
Cyanobacteria are prokaryotic phototrophs that, in addition to being excellent model organisms for studying photosynthesis, have tremendous potential for light-driven synthetic biology and biotechnology. These versatile and resilient microorganisms harness the energy of sunlight to oxidise water, generating chemical energy (ATP) and reductant (NADPH) that can be used to drive sustainable synthesis of high-value natural products in genetically modified strains. In this commentary article for the Synthetic Microbiology Caucus we discuss the great progress that has been made in engineering cyanobacterial hosts as microbial cell factories for solar-powered biosynthesis. We focus on some of the main areas where the synthetic biology and metabolic engineering tools in cyanobacteria are not as advanced as those in more widely used heterotrophic chassis, and go on to highlight key improvements that we feel are required to unlock the full power of cyanobacteria for future green biotechnology.  相似文献   

19.

Background

We consider the possibility of engineering metabolic pathways in a chassis organism in order to synthesize novel target compounds that are heterologous to the chassis. For this purpose, we model metabolic networks through hypergraphs where reactions are represented by hyperarcs. Each hyperarc represents an enzyme-catalyzed reaction that transforms set of substrates compounds into product compounds. We follow a retrosynthetic approach in order to search in the metabolic space (hypergraphs) for pathways (hyperpaths) linking the target compounds to a source set of compounds.

Results

To select the best pathways to engineer, we have developed an objective function that computes the cost of inserting a heterologous pathway in a given chassis organism. In order to find minimum-cost pathways, we propose in this paper two methods based on steady state analysis and network topology that are to the best of our knowledge, the first to enumerate all possible heterologous pathways linking a target compounds to a source set of compounds. In the context of metabolic engineering, the source set is composed of all naturally produced chassis compounds (endogenuous chassis metabolites) and the target set can be any compound of the chemical space. We also provide an algorithm for identifying precursors which can be supplied to the growth media in order to increase the number of ways to synthesize specific target compounds.

Conclusions

We find the topological approach to be faster by several orders of magnitude than the steady state approach. Yet both methods are generally scalable in time with the number of pathways in the metabolic network. Therefore this work provides a powerful tool for pathway enumeration with direct application to biosynthetic pathway design.  相似文献   

20.
近年来,合成生物学借助工程化在人工生命系统的设计与构建方面取得了长足进展,特别是“细胞工厂”的开发和应用为天然产物的合成带来了深刻变革。环脂肽是一类新型的天然表面活性剂,因其特殊的结构和功能亦可作为抗生素使用。目前,合成环脂肽最理想的微生物底盘是芽孢杆菌。因此,许多研究者致力于通过合成生物学技术来提升芽孢杆菌作为环脂肽细胞工厂的性能。首先,对芽孢杆菌中环脂肽的非核糖体肽合成途径进行概述;其次,重点介绍与环脂肽合成相关的调控因子;再次,从底盘细胞的选择、基因编辑工具的开发、合成路径的优化及发酵过程的优化等四个方面对合成生物学指导下环脂肽的相关研究进展进行总结;最后,讨论环脂肽合成中可能存在的挑战,并就未来研究趋势进行展望,以期为高效环脂肽细胞工厂的开发提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号