首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α). Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα) phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB). The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis). Our data suggest that remifentanil increases cellular respiration of human hepatocytes and prevents TNF-α-induced mitochondrial dysfunction. The results were not explained by uncoupling of mitochondrial respiration.  相似文献   

2.
The toxicity of 3-trifluoromethyl-4-nitrophenol (TFM) appears to be due to a mismatch between ATP supply and demand in lamprey, depleting glycogen stores and starving the nervous system of ATP. The cause of this TFM-induced ATP deficit is unclear. One possibility is that TFM uncouples mitochondrial oxidative phosphorylation, thus impairing ATP production. To test this hypothesis, mitochondria were isolated from the livers of sea lamprey and rainbow trout, and O(2) consumption rates were measured in the presence of TFM or 2,4-dinitrophenol (2,4-DNP), a known uncoupler of oxidative phosphorylation. TFM and 2,4-DNP markedly increased State IV respiration in a dose-dependent fashion, but had no effect on State III respiration, which is consistent with uncoupling of oxidative phosphorylation. To determine how TFM uncoupled oxidative phosphorylation, the mitochondrial transmembrane potential (TMP) was recorded using the mitochondria-specific dye rhodamine 123. Mitochondrial TMP decreased by 22% in sea lamprey, and by 28% in trout following treatment with 50μmolL(-1) TFM. These findings suggest that TFM acted as a protonophore, dissipating the proton motive force needed to drive ATP synthesis. We conclude that the mode of TFM toxicity in sea lamprey and rainbow trout is via uncoupling of oxidative phosphorylation, leading to impaired ATP production.  相似文献   

3.
Mitochondrial uncoupling,ROS generation and cardioprotection   总被引:1,自引:0,他引:1  
Susana Cadenas 《BBA》2018,1859(9):940-950
Mitochondrial oxidative phosphorylation is incompletely coupled, since protons translocated to the intermembrane space by specific respiratory complexes of the electron transport chain can return to the mitochondrial matrix independently of the ATP synthase —a process known as proton leak— generating heat instead of ATP. Proton leak across the inner mitochondrial membrane increases the respiration rate and decreases the electrochemical proton gradient (Δp), and is an important mechanism for energy dissipation that accounts for up to 25% of the basal metabolic rate. It is well established that mitochondrial superoxide production is steeply dependent on Δp in isolated mitochondria and, correspondingly, mitochondrial uncoupling has been identified as a cytoprotective strategy under conditions of oxidative stress, including diabetes, drug-resistance in tumor cells, ischemia-reperfusion (IR) injury or aging. Mitochondrial uncoupling proteins (UCPs) are able to lower the efficiency of oxidative phosphorylation and are involved in the control of mitochondrial reactive oxygen species (ROS) production. There is strong evidence that UCP2 and UCP3, the UCP1 homologues expressed in the heart, protect against mitochondrial oxidative damage by reducing the production of ROS. This review first analyzes the relationship between mitochondrial proton leak and ROS generation, and then focuses on the cardioprotective role of chemical uncoupling and uncoupling mediated by UCPs. This includes their protective effects against cardiac IR, a condition known to increase ROS production, and their roles in modulating cardiovascular risk factors such as obesity, diabetes and atherosclerosis.  相似文献   

4.
5.
In perfused rat hearts alterations of aortic flow and mitochondrial membrane potential resulting from uncoupling of oxidative phosphorylation, hypoxia and treatment with a cardioprotective drug (2-mercaptopropionylglycine (MPG) have been studied. Mitochondrial membrane potential was followed by surface fluorimetry on DASPMI stained hearts. This fluorochrome specifically stains mitochondria in living cells; fluorescence intensity is related to the electrochemical gradient. Aortic flow turned out to be a much more sensitive indicator of heart function than ventricular pressure or mitochondrial membrane potential. No direct relationship exists between mitochondrial membrane potential and ATP production under the different metabolic conditions. Two phases of hypoxic mitochondrial damage have been deduced: the first results in derangement of ATP synthases while membrane potential is maintained, the second in irreversible damage of mitochondrial membranes with loss of membrane potential.  相似文献   

6.
Energy catastrophe, when mitochondria hydrolyze glycolytic ATP instead of producing respiratory ATP, has been modeled. In highly glycolyzing HeLa cells, 30-50% of the population survived after inhibition of respiration and uncoupling of oxidative phosphorylation for 2-4 days. The survival was accompanied by selective elimination of mitochondria. This type of mitoptosis includes (i) fission of mitochondrial filaments, (ii) clustering of the resulting roundish mitochondria in the perinuclear area, (iii) occlusion of mitochondrial clusters by a membrane (formation of a "mitoptotic body"), (iv) decomposition of mitochondria inside this body to small membrane vesicles, (v) protrusion of the body from the cell, and (vi) disruption of the body boundary membrane. Autophagy was not involved in this mitoptotic program. Increased production of reactive oxygen species (ROS) was necessary for execution of the program, since antioxidants prevent mitoptosis and kill the cells treated with the mitochondrial poisons as if a ROS-linked mitoptosis serves for protection of the cells under conditions of severe mitochondrial stress. It is suggested that exocytosis of mitoptotic bodies may be involved in maturation of reticulocytes and lens fiber cells.  相似文献   

7.
Mitochondrial ATP-sensitive K(+) channel (mitoK(ATP)) opening was shown previously to slightly increase respiration and decrease the membrane potential by stimulating K(+) cycling across the inner membrane. Here we show that mitoK(ATP) opening reduces reactive oxygen species generation in heart, liver and brain mitochondria. Decreased H(2)O(2) release is observed when mitoK(ATP) is active both with respiration stimulated by oxidative phosphorylation and when ATP synthesis is inhibited. In addition, decreased H(2)O(2) release is observed when mitochondrial Delta pH is enhanced, an effect expected to occur when mitoK(ATP) is open. We conclude that mitoK(ATP) is an effective pathway to trigger mild uncoupling, preventing reactive oxygen species release.  相似文献   

8.
9.
Mitochondrial uncoupling proteins (UCPs) uncouple oxidative phosphorylation from ATP synthesis. We explored the neuroprotective role of UCP4 with its stable overexpression in SH-SY5Y cells, after exposure to either MPP+ or dopamine to induce ATP deficiency and oxidative stress. Cells overexpressing UCP4 proliferated faster in normal cultures and after exposure to MPP+ and dopamine. Differentiated UCP4-overexpressing cells survived better when exposed to MPP+ with decreased LDH release. Contrary to the mild uncoupling hypothesis, UCP4 overexpression resulted in increased absolute ATP levels (with ADP/ATP ratios similar to those of controls under normal conditions and ADP supplementation) associated with increased respiration rate. Under MPP+ toxicity, UCP4 overexpression preserved ATP levels and mitochondrial membrane potential (MMP) and reduced oxidative stress; the preserved ATP level was not due to increased glycolysis. Under MPP+ toxicity, the induction of UCP2 expression in vector controls was absent in UCP4-overexpressing cells, suggesting that UCP4 may compensate for UCP2 expression. UCP4 function does not seem to adhere to the mild uncoupling hypothesis in its neuroprotective mechanisms under oxidative stress and ATP deficiency. UCP4 overexpression increases cell survival by inducing oxidative phosphorylation, preserving ATP synthesis and MMP, and reducing oxidative stress.  相似文献   

10.
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 microM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK(-) cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK(-) cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

11.
《BBA》2020,1861(8):148209
Mitochondrial uncoupling proteins (UCPs) play an essential role in dissipating the proton gradient and controlling the mitochondrial inner membrane potential. When active, UCPs promote proton leak across the inner membrane, oxidative phosphorylation uncoupling, oxygen uptake increase and decrease the ATP synthesis. Invertebrates possess only isoforms UCP4 and UCP5, however, the role of these proteins is not clear in most species since it may depend on the physiological needs of each animal. This study presents the first functional characterization of crustacean uncoupling proteins from the white shrimp Litopenaeus vannamei LvUCP4 and LvUCP5. Free radicals production in various shrimp organs/tissues was first evaluated, and mitochondria were isolated from shrimp pleopods. The oxygen consumption rate, membrane potential and proton transport of the isolated non-phosphorylating mitochondria were used to determine LvUCPs activation/inhibition. Results indicate that UCPs activity is stimulated in the presence of 4-hydroxyl-2-nonenal (HNE) and myristic acid, and inhibited by the purine nucleotide GDP. A hypoxia/re-oxygenation assay was conducted to determine whether UCPs participate in shrimp mitochondria response to oxidative stress. Isolated mitochondria from shrimp at re-oxygenation produced large quantities of hydrogen peroxide and higher levels of both LvUCPs were immunodetected. Results suggest that, besides the active response of the shrimp antioxidant system, UCP-like activity is activated after hypoxia exposure and during re-oxygenation. LvUCPs may represent a mild uncoupling mechanism, which may be activated before the antioxidant system of cells, to early control reactive oxygen species production and oxidative damage in shrimp.  相似文献   

12.
Neurons experience high metabolic demand during such processes as synaptic vesicle recycling, membrane potential maintenance and Ca2+ exchange/extrusion. The energy needs of these events are met in large part by mitochondrial production of ATP through the process of oxidative phosphorylation. The job of ATP production by the mitochondria is performed by the F1FO ATP synthase, a multi-protein enzyme that contains a membrane-inserted portion, an extra-membranous enzymatic portion and an extensive regulatory complex. Although required for ATP production by mitochondria, recent findings have confirmed that the membrane-confined portion of the c-subunit of the ATP synthase also houses a large conductance uncoupling channel, the mitochondrial permeability transition pore (mPTP), the persistent opening of which produces osmotic dysregulation of the inner mitochondrial membrane, uncoupling of oxidative phosphorylation and cell death. Recent advances in understanding the molecular components of mPTP and its regulatory mechanisms have determined that decreased uncoupling occurs in states of enhanced mitochondrial efficiency; relative closure of mPTP therefore contributes to cellular functions as diverse as cardiac development and synaptic efficacy.  相似文献   

13.
Uncoupling proteins, members of the mitochondrial carrier family, are present in mitochondrial inner membrane and mediate free fatty acid-activated, purine-nucleotide-inhibited H+ re-uptake. Since 1995, it has been shown that the uncoupling protein is present in many higher plants and some microorganisms like non-photosynthetic amoeboid protozoon, Acanthamoeba castellanii and non-fermentative yeast Candida parapsilosis. In mitochondria of these organisms, uncoupling protein activity is revealed not only by stimulation of state 4 respiration by free fatty acids accompanied by decrease in membrane potential (these effects being partially released by ATP and GTP) but mainly by lowering ADP/O ratio during state 3 respiration. Plant and microorganism uncoupling proteins are able to divert very efficiently energy from oxidative phosphorylation, competing for deltamicroH+ with ATP synthase. Functional connection and physiological role of uncoupling protein and alternative oxidase, two main energy-dissipating systems in plant-type mitochondria, are discussed.  相似文献   

14.
The effect of emestrin, a new macrocyclic epidithiodioxopiperazine mycotoxin from severalEmericella species, on mitochondrial reactions was studied using isolated rat liver mitochondria to gain insight into the molecular mechanism for itsin vivo toxicity to rat and mouse. Emestrin was found to inhibit ATP synthesis in mitochondria causing an uncoupling of oxidative phosphorylation and a depression of respiration in isolated mitochondria. In addition to these effects on mitochondrial respiration, emestrin elicited a dratsic structural alteration (swelling) of mitochondria as observed in thein vivo system. The mitochondrial swelling was significantly enhanced by the subsequent addition of calcium ion. Emestrin B, in which dithio group is replaced by trithio group, exerted an uncoupling effect on oxidative phosphorylation without accompanying such depressive effect on state 3 respiration as observed for emestrin.  相似文献   

15.
Thyroid status is crucial in energy homeostasis, but despite extensive studies the actual mechanism by which it regulates mitochondrial respiration and ATP synthesis is still unclear. We studied oxidative phosphorylation in both intact liver cells and isolated mitochondria from in vivo models of severe not life threatening hyper- and hypothyroidism. Thyroid status correlated with cellular and mitochondrial oxygen consumption rates as well as with maximal mitochondrial ATP production. Addition of a protonophoric uncoupler, 2,4-dinitrophenol, to hepatocytes did not mimic the cellular energetic change linked to hyperthyroidism. Mitochondrial content of cytochrome oxidase, ATP synthase, phosphate and adenine nucleotide carriers were increased in hyperthyroidism and decreased in hypothyroidism as compared to controls. As a result of these complex changes, the maximal rate of ATP synthesis increased in hyperthyroidism despite a decrease in ATP/O ratio, while in hypothyroidism ATP/O ratio increased but did not compensate for the flux limitation of oxidative phosphorylation. We conclude that energy homeostasis depends on a compromise between rate and efficiency, which is mainly regulated by thyroid hormones.  相似文献   

16.
Valérie Desquiret 《BBA》2006,1757(1):21-30
Here, we show that 3 days of mitochondrial uncoupling, induced by low concentrations of dinitrophenol (10 and 50 μM) in cultured human HepG2 cells, triggers cellular metabolic adaptation towards oxidative metabolism. Chronic respiratory uncoupling of HepG2 cells induced an increase in cellular oxygen consumption, oxidative capacity and cytochrome c oxidase activity. This was associated with an upregulation of COXIV and ANT3 gene expression, two nuclear genes that encode mitochondrial proteins involved in oxidative phosphorylation. Glucose consumption, lactate and pyruvate production and growth rate were unaffected, indicating that metabolic adaptation of HepG2 cells undergoing chronic respiratory uncoupling allows continuous and efficient mitochondrial ATP production without the need to increase glycolytic activity. In contrast, 3 days of dinitrophenol treatment did not change the oxidative capacity of human 143B.TK cells, but it increased glucose consumption, lactate and pyruvate production. Despite a large increase in glycolytic metabolism, the growth rate of 143B.TK cells was significantly reduced by dinitrophenol-induced mitochondrial uncoupling. We propose that chronic respiratory uncoupling may constitute an internal bioenergetic signal, which would initiate a coordinated increase in nuclear respiratory gene expression, which ultimately drives mitochondrial metabolic adaptation within cells.  相似文献   

17.
Respiration, oxidative phosphorylation, calcium uptake, and the mitochondrial membrane potential of trophozoites of the malaria parasite Plasmodium berghei were assayed in situ after permeabilization with digitonin. ADP promoted an oligomycin-sensitive transition from resting to phosphorylating respiration. Respiration was sensitive to antimycin A and cyanide. The capacity of trophozoites to sustain oxidative phosphorylation was additionally supported by the detection of an oligomycin-sensitive decrease in mitochondrial membrane potential induced by ADP. Phosphorylation of ADP could be obtained in permeabilized trophozoites in the presence of succinate, citrate, alpha-ketoglutarate, glutamate, malate, dihydroorotate, alpha-glycerophosphate, and N,N,N',N'-tetramethyl-p-phenylenediamine. Ca(2+) uptake caused membrane depolarization compatible with the existence of an electrogenically mediated Ca(2+) transport system in these mitochondria. An uncoupling effect of fatty acids was partly reversed by bovine serum albumin, ATP, or GTP and not affected by atractyloside, ADP, glutamate, or malonate. Evidence for the presence of a mitochondrial uncoupling protein in P. berghei was also obtained by using antibodies raised against plant uncoupling mitochondrial protein. Together these results provide the first direct biochemical evidence of mitochondrial function in ATP synthesis and Ca(2+) transport in a malaria parasite and suggest the presence of an H(+) conductance in trophozoites similar to that produced by a mitochondrial uncoupling protein.  相似文献   

18.
Excessive free fatty acid (FFA) exposure represents a potentially important diabetogenic condition that can impair insulin secretion from pancreatic beta-cells. Because mitochondrial oxidative phosphorylation is a main link between glucose metabolism and insulin secretion, in the present work we investigated the effects of the FFA oleate (OE) on mitochondrial function in the clonal pancreatic beta-cell line, MIN6. Both the long term (72 h) and short term (immediately after application) impact of OE exposure on beta-cells was investigated. After 72 h of exposure to OE (0.4 mm, 0.5% bovine serum albumin) cells were washed and permeabilized, and mitochondrial function (respiration, phosphorylation, membrane potential formation, production of reactive oxygen species) was measured in the absence or presence of OE. MIN6 cells exposed to OE for 72 h showed impaired glucose-stimulated insulin secretion and decreased cellular ATP. Mitochondria in OE-exposed cells retained normal functional characteristics in FFA-free medium; however, they were significantly more sensitive to the acute uncoupling effect of OE treatment. The mitochondria of OE-exposed cells displayed increased depolarization caused by acute OE treatment, which is attributable to the elevation in the FFA-transporting function of uncoupling protein 2 and the dicarboxylate carrier. These cells also had an increased production of reactive oxygen species in complex I of the mitochondrial respiratory chain that could be activated by FFA. A high level of reduction of respiratory complex I augmented acute FFA-induced uncoupling in a way compatible with activation of mitochondrial uncoupling protein by intramitochondrial superoxide. A stronger augmentation was observed in OE-exposed cells. Together, these events may underlie FFA-induced depression of the ATP/ADP ratio in beta-cells, which accounts for the defective glucose-stimulated insulin secretion associated with lipotoxicity.  相似文献   

19.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

20.
KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM), an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT), we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号