首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entomopathogenic nematodes (EPNs) can kill and regulate populations of soil‐inhabiting insects, but studies evaluating these interactions in native ecosystems are rare. The objective of this study was to examine the effects of EPNs on a non‐agricultural caterpillar, Platyprepia virginalis (Boisduval) (Lepidoptera: Arctiidae), under natural conditions. Platyprepia virginalis caterpillars live in litter on the soil surface feeding beneath bush lupine during summer, autumn, and winter. Initial laboratory assays revealed that the caterpillars were vulnerable to at least two species of EPNs with which they co‐occur in the coastal prairie in northern California (USA). In contrast to laboratory assays, caterpillars survived exposure to prairie soil containing EPNs under natural conditions in field assays. To better understand the divergence between laboratory and field results for this native caterpillar, we used sentinel insects [Galleria mellonella L. (Lepidoptera: Pyralidae)] to identify particular locations where EPNs were present in the field. Platyprepia virginalis caterpillars were caged at these sites but again showed no evidence of susceptibility to EPNs. Platyprepia virginalis caterpillars reduce their exposure to EPNs by spending their time in and above the litter rather than contacting the soil when given the choice in nature. We conclude that P. virginalis is unlikely to serve as a reservoir for EPNs and that nematodes are unlikely to be important mortality factors for P. virginalis in this natural system.  相似文献   

2.
Entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabditidae are obligate insect pathogens. Their favourable characteristics as biocontrol agents have resulted in some species of EPNs being released globally and widely used for the control of diverse insect pests. In this review, we consider the occurrence of currently described EPN species, including those that have been released globally for commercial purposes. We also discuss the contribution of regulation policies to the global distribution of these species and issues that influence import regulations. Possible non-target effects, the use of commercial versus native EPNs and the possible interaction between these species are considered. Finally, we provide a view as to whether existing policies adequately deal with the risks associated with the global movement of EPNs and we suggest future directions that should be considered for the use of EPNs as biological control agents.  相似文献   

3.
Quantitative real-time PCR (qPCR) is a powerful tool to detect and quantify species of cryptic organisms such as bacteria, fungi and nematodes from soil samples. As such, qPCR offers new opportunities to study the ecology of soil habitats by providing a single method to characterize communities of diverse organisms from a sample of DNA. Here we describe molecular tools to detect and quantify two bacteria (Paenibacillus nematophilus and Paenibacillus sp.) phoretically associated with entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematodae. We also extend the repertoire of species specific primers and TaqMan® probes for EPNs to include Heterorhabditis bacteriophora, Steinernema carpocapsae, Steinernema feltiae and Steinernema scapterisci, all widely distributed species used commercially for biological control. Primers and probes were designed from the ITS rDNA region for the EPNs and the 16S rDNA region for the bacteria. Standard curves were established using DNA from pure cultures of EPNs and plasmid DNA from the bacteria. The use of TaqMan probes in qPCR resolved the non-specificity of EPN and some bacterial primer amplifications whereas those for Paenibacillus sp. also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two species that are not phoretically associated with nematodes. The primer-probe sets for EPNs were able to accurately detect three infective juvenile EPNs added to nematodes recovered from soil samples. The molecular set for Paenibacillus sp. detected the bacterium attached to Steinernema diaprepesi suspended in water or added to nematodes recovered from soil samples but its detection decreased markedly in the soil samples, even when a nested PCR protocol was employed. Using qPCR we detected S. scapterisci at low levels in a citrus grove, which suggested natural long-distance spread of this exotic species, which is applied to pastures and golf courses to manage mole crickets (Scapteriscus spp.). Paenibacillus sp. (but not P. nematophilus) was detected in low quantities in the same survey but was unrelated to the spatial pattern of S. diaprepesi. The results of this research validate several new tools for studying the ecology of EPNs and their phoretic bacteria.  相似文献   

4.
Studies on bacterial plant diseases have thus far been focused on the single bacterial species causing the disease, with very little attention given to the many other microorganisms present in the microbiome. This study intends to use pathobiome analysis of the rice foot rot disease, caused by Dickeya zeae, as a case study to investigate the effects of this bacterial pathogen to the total resident microbiome and to highlight possible interactions between the pathogen and the members of the community involved in the disease process. The microbiome of asymptomatic and the pathobiome of foot-rot symptomatic field-grown rice plants over two growing periods and belonging to two rice cultivars were determined via 16S rRNA gene amplicon sequencing. Results showed that the presence of D. zeae is associated with an alteration of the resident bacterial community in terms of species composition, abundance and richness, leading to the formation of microbial consortia linked to the disease state. Several bacterial species were significantly co-presented with the pathogen in the two growing periods suggesting that they could be involved in the disease process. Besides, culture-dependent isolation and in planta inoculation studies of a bacterial member of the pathobiome, identified as positive correlated with the pathogen in our in silico analysis, indicated that it benefits from the presence of D. zeae. A similar microbiome/pathobiome experiment was also performed in a symptomatically different rice disease evidencing that not all plant diseases have the same consequence/relationship with the plant microbiome. This study moves away from a pathogen-focused stance and goes towards a more ecological perception considering the effect of the entire microbial community which could be involved in the pathogenesis, persistence, transmission and evolution of plant pathogens.  相似文献   

5.
Entomopathogenic nematodes (EPNs) are promising biological control agents of soil-dwelling insect pests of many crops. These nematodes are ubiquitous in both natural and agricultural areas. Their efficacy against arthropods is affected directly and indirectly by food webs and edaphic conditions. It has long been suggested that a greater understanding of EPN ecology is needed to achieve consistent biological control by these nematodes and the development of molecular tools is helping to overcome obstacles to the study of cryptic organisms and complex interactions. Here we extend the repertoire of molecular tools to characterize soil food webs by describing primers/probe set to quantify certain free-living, bactivorous nematodes (FLBNs) that interact with EPNs in soil. Three FLBN isolates were recovered from soil baited with insect larvae. Morphological and molecular characterization confirmed their identities as Acrobeloides maximum (RT-1-R15C and RT-2-R25A) and Rhabditis rainai (PT-R14B). Laboratory experiments demonstrated the ability of these FLBNs to interfere with the development of Steinernema diaprepesi, Steinernema riobrave and Heterorhabditis indica parasitizing the weevil Diaprepes abbreviatus (P < 0.001), perhaps due to resource competition. A molecular probe was developed for the strongest competitor, A. maximum. We selected the highly conserved SSU rDNA sequence to design the primers/probe, because these sequences are more abundantly available for free-living nematodes than ITS sequences that can likely provide better taxonomic resolution. Our molecular probe can identify organisms that share ?98% similarity at this locus. The use of this molecular probe to characterize soil communities from samples of nematode DNA collected within a citrus orchard revealed positive correlations (P < 0.01) between Acrobeloides-group nematodes and total numbers of EPNs (S. diaprepesi, H. indica and Heterorhabditis zealandica) as well as a complex of nematophagous fungi comprising Catenaria sp. and Monachrosporium gephyropagum that are natural enemies of EPNs. These relationships can be broadly interpreted as supporting Linford’s hypothesis, i.e., decomposition of organic matter (here, insect cadavers) greatly increases bactivorous nematodes and their natural enemies.  相似文献   

6.
Entomopathogenic nematodes (EPNs) in the families Heterorhabditidae and Steinernematidae have a mutualistic–symbiotic association with enteric γ-Proteobacteria (Steinernema–Xenorhabdus and Heterorhabditis–Photorhabdus), which confer high virulence against insects. EPNs have been studied intensively because of their role as a natural mortality factor for soil-dwelling arthropods and their potential as biological control agents for belowground insect pests. For many decades, research on EPNs focused on the taxonomy, phylogeny, biogeography, genetics, physiology, biochemistry and ecology, as well as commercial production and application technologies. More recently, EPNs and their bacterial symbionts are being viewed as a model system for advancing research in other disciplines such as soil ecology, symbiosis and evolutionary biology. Integration of existing information, particularly the accumulating information on their biology, into increasingly detailed population models is critical to improving our ability to exploit and manage EPNs as a biological control agent and to understand ecological processes in a changing world. Here, we summarize some recent advances in phylogeny, systematics, biogeography, community ecology and population dynamics models of EPNs, and describe how this research is advancing frontiers in ecology.  相似文献   

7.
Use of predators, parasitoids and entomopathogens as biocontrol agents in pome fruit production can lead to more efficient and sustainable pest management programmes. The European earwig (Forficula auricularia Linnaeus [Dermaptera: Forficulidae]) is a major predator of key pests in pome fruit orchards, and entomopathogenic nematodes (EPNs) of the families Steinernematidae and Heterorhabditidae are obligate parasites of a large number of insect species. Therefore, the interaction between earwigs and EPNs can play an important role in pest management programmes. Susceptibility of the European earwig to Steinernema carpocapsae, Steinernema feltiae (Steinernematidae) and Heterorhabditis bacteriophora (Heterorhabditidae) was evaluated. S. carpocapsae was the only tested EPN capable of killing the European earwig. However, the European earwig can detect the presence of S. carpocapsae and therefore avoid nematode‐treated shelters. An earwig deterrent activity in EPN‐killed codling moth larvae that reduces the foraging of European earwig on insect cadavers containing nematodes and allows nematodes to complete their life cycle was also assessed with the three species of nematodes. These findings suggest a positive compatibility between the European earwig and EPNs.  相似文献   

8.
Soil-dwelling entomopathogenic nematodes (EPNs) kill arthropod hosts by injecting their symbiotic bacteria into the host hemolymph and feed on the bacteria and the tissue of the dying host for several generations cycles until the arthropod cadaver is completely depleted. The EPN–bacteria–arthropod cadaver complex represents a rich energy source for the surrounding opportunistic soil fungal biota and other competitors. We hypothesized that EPNs need to protect their food source until depletion and that the EPN symbiotic bacteria produce volatile and non-volatile exudations that deter different soil fungal groups in the soil. We isolated the symbiotic bacteria species (Alcaligenes faecalis) from the EPN Oscheius spp. and ran infectivity bioassays against entomopathogenic fungi (EPF) as well as against plant pathogenic fungi (PPF). We found that both volatile and non-volatile symbiotic bacterial exudations had negative effects on both EPF and PPF. Such deterrent function on functionally different fungal strains suggests a common mode of action of A. faecalis bacterial exudates, which has the potential to influence the structure of soil microbial communities, and could be integrated into pest management programs for increasing crop protection against fungal pathogens.  相似文献   

9.
昆虫病原线虫可开发成生物农药,广泛应用于多种地下及钻蛀害虫的安全防治。但昆虫病原线虫货架期较短,对寒冷等极端环境的耐受性较差,影响了其在生物防治方面的商业开发。本文介绍了寒区的昆虫病原线虫资源,总结了昆虫病原线虫耐寒性的测定方法及增强方法、耐寒性差异的研究进展,并对其耐寒的生理生化机制及分子机理进行了综述。研究昆虫病原线虫的耐寒性,对于解释种群动态,指导昆虫病原线虫的低温保存,以及拓展其在生物防治方面的应用具有重要意义。  相似文献   

10.
This paper reports on several aspects of the taxonomy and biology of the symbiotic bacteria, Xenorhabdus spp. and Photorhabdus spp., associated with entomopathogenic nematodes (EPNs), which may be used to define the boundaries with pathogenic bacteria of medical, veterinary or agronomic importance. All the result of tests undertaken to assess the effects of these bacteria on warm-blooded vertebrates were negative, indicating that the bacteri would pose no hazard to vertebrates in practice. Non-symbiotic microorganisms are also associated occasionally with EPNs, and some of them, e.g Providencia rettgeri, belong to taxa which include opportunistic pathogens of man. This review emphasizes that the relationship between these non-symbiotic bacteria and nematodes cannot be considered to be a risk for humans because they do not support the growth of nematodes during long-term mass rearing or they do not persist during storage of nematodes, so their purposeful use is necessarily excluded for industrial production. Good practice by biotechnology laboratories can avoid such contaminants. However, commercial producers should be aware of the possible occurrence of human opportunistic pathogens and prevent such contaminations by establishing monoxenic symbiotic cultures. The pathogenic properties of both partners of the normal bacterium-EPN complex are examined with respect to the risks they pose to human and vertebrate health and to the environment. It is concluded that no risk to warm-blooded animals or plants is related to the use of EPNs in biological control.  相似文献   

11.
Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis and their associated bacteria (Xenorhabdus spp. and Photorhabdus spp., respectively) are lethal parasites of soil dwelling insects. We collected 168 soil samples from five provinces, all located in southern Thailand. Eight strains of EPNs were isolated and identified to species using restriction profiles and sequence analysis. Five of the isolates were identified as Heterorhabditis indica, and one as Heterorhabditis baujardi. Two undescribed Steinernema spp. were also discovered which matched no published sequences and grouped separately from the other DNA restriction profiles. Behavioral tests showed that all Heterorhabditis spp. were cruise foragers, based on their attraction to volatile cues and lack of body-waving and standing behaviors, while the Steinernema isolates were more intermediate in foraging behavior. The infectivity of Thai EPN strains against Galleria mellonella larvae was investigated using sand column bioassays and the LC(50) was calculated based on exposures to nematodes in 24-well plates. The LC(50) results ranged from 1.99-6.95 IJs/insect. Nine centimeter columns of either sandy loam or sandy clay loam were used to determine the nematodes' ability to locate and infect subterranean insects in different soil types. The undescribed Steinernema sp. had the greatest infection rate in both soil types compared to the other Thai isolates and three commercial EPNs (Heterorhabditis bacteriophora, Steinernema glaseri and Steinernema riobrave).  相似文献   

12.
There is considerable evidence that both plant diversity and plant identity can influence the level of predation and predator abundance aboveground. However, how the level of predation in the soil and the abundance of predatory soil fauna are related to plant diversity and identity remains largely unknown. In a biodiversity field experiment, we examined the effects of plant diversity and identity on the infectivity of entomopathogenic nematodes (EPNs, Heterorhabditis and Steinernema spp.), which prey on soil arthropods, and abundance of carnivorous non‐EPNs, which are predators of other nematode groups. To obtain a comprehensive view of the potential prey/food availability, we also quantified the abundance of soil insects and nonpredatory nematodes and the root biomass in the experimental plots. We used structural equation modeling (SEM) to investigate possible pathways by which plant diversity and identity may affect EPN infectivity and the abundance of carnivorous non‐EPNs. Heterorhabditis spp. infectivity and the abundance of carnivorous non‐EPNs were not directly related to plant diversity or the proportion of legumes, grasses and forbs in the plant community. However, Steinernema spp. infectivity was higher in monocultures of Festuca rubra and Trifolium pratense than in monocultures of the other six plant species. SEM revealed that legumes positively affected Steinernema infectivity, whereas plant diversity indirectly affected the infectivity of Heterorhabditis EPNs via effects on the abundance of soil insects. The abundance of prey (soil insects and root‐feeding, bacterivorous, and fungivorous nematodes) increased with higher plant diversity. The abundance of prey nematodes was also positively affected by legumes. These plant community effects could not be explained by changes in root biomass. Our results show that plant diversity and identity effects on belowground biota (particularly soil nematode community) can differ between organisms that belong to the same feeding guild and that generalizations about plant diversity effects on soil organisms should be made with great caution.  相似文献   

13.
Mustard (Brassica and Sinapis spp.) green manures tilled into the soil preceding potato crops act as bio-fumigants that are toxic to plant–parasitic nematodes, providing an alternative to synthetic soil fumigants. However, it is not known whether mustard green manures also kill beneficial entomopathogenic nematodes (EPNs) that contribute to the control of pest insects. We used sentinel insect prey (Galleria mellonella larvae) to measure EPN infectivity in Washington State (USA) potato fields that did or did not utilize mustard green manures. We found a trend toward lower rates of EPN infection in fields, where mustard green manures were applied, compared to those not receiving this cultural control method. In a series of bioassays we then tested whether the application of two mustard (Brassica juncea) cultivars, differing in glucosinolate levels, disrupted the abilities of a diverse group of EPN species to infect insect hosts. Mustard-exposure trials were conducted first in laboratory arenas where EPNs were exposed to mustard extracts suspended in water, and then in larger microcosms in the greenhouse where EPNs were exposed to green manure grown, chopped, and incorporated into field soil. In all trials we used G. mellonella larvae as hosts and included multiple EPN species in the genera Steinernema (Steinernema carpocapsae, Steinernema feltiae, Steinernema glaseri, and Steinernema riobrave) and Heterorhabditis (Heterorhabditis bacteriophora, Heterorhabditis marelatus, and Heterorhabditis megidis). In the laboratory, EPN infection rates were lower in arenas receiving mustard extracts than the control (water), and lower still when EPNs were exposed to extracts from plants with high versus low glucosinolate levels. Results were nearly identical when mustard foliage was soil-incorporated into greenhouse microcosms, except that the negative effects of mustards on EPNs developed more slowly in soil. Significantly, in arenas of both types one EPN species, S. feltiae, appeared to be relatively unaffected by mustard exposure. Together, our results suggest that the use of mustard bio-fumigants for the control of plant–parasitic nematodes has the potential to interfere with the biocontrol of insect pests using EPNs. Thus, it may be difficult to combine these two approaches in integrated pest management programs.  相似文献   

14.
Entomopathogenic Nematode Production and Application Technology   总被引:1,自引:0,他引:1  
Production and application technology is critical for the success of entomopathogenic nematodes (EPNs) in biological control. Production approaches include in vivo, and in vitro methods (solid or liquid fermentation). For laboratory use and small scale field experiments, in vivo production of EPNs appears to be the appropriate method. In vivo production is also appropriate for niche markets and small growers where a lack of capital, scientific expertise or infrastructure cannot justify large investments into in vitro culture technology. In vitro technology is used when large scale production is needed at reasonable quality and cost. Infective juveniles of entomopathogenic nematodes are usually applied using various spray equipment and standard irrigation systems. Enhanced efficacy in EPN applications can be facilitated through improved delivery mechanisms (e.g., cadaver application) or optimization of spray equipment. Substantial progress has been made in recent years in developing EPN formulations, particularly for above ground applications, e.g., mixing EPNs with surfactants or polymers or with sprayable gels. Bait formulations and insect host cadavers can enhance EPN persistence and reduce the quantity of nematodes required per unit area. This review provides a summary and analysis of factors that affect production and application of EPNs and offers insights for their future in biological insect suppression.  相似文献   

15.
The methodologies of classical genetics and genetic engineering can be used for the genetic improvement of entomopathogenic nematodes (EPNs) and their symbiont bacteria. Many of the complex behavioural and physiological traits which are targets for genetic improvement are likely to be controlled polygenically, thus selective breeding for improvements to these traits would be appropriate. Much basic research needs to be carried out before researchers will be able to effect improvements to EPNs and their symbionts by genetic engineering. There is a lack of basic information on the genetics and biochemistry of the characteristics that might be altered by transgenic methods in EPNs, and their bacteria, and existing transformation protocols need to be made more effective.  相似文献   

16.
Quantitative real‐time PCR (qPCR) is a powerful tool to study species of cryptic organisms in complex food webs. This technique was recently developed to detect and quantify several species of entomopathogenic nematodes (EPNs), which are widely used for biological control of insects, and some natural enemies of EPNs such as nematophagous fungi and the phoretic bacteria Paenibacillus sp. and Paenibacillus nematophilus. A drawback to the use of primers and TaqMan probes designed for Paenibacillus sp. is that the qPCR also amplified Paenibacillus thiaminolyticus and Paenibacillus popilliae, two closely related species that are not phoretically associated with EPNs. Here, we report that the detection of Paenibacillus sp. DNA in nematode samples was two orders of magnitude greater (P < 0.001) when the bacterium was added to soil together with its EPN species‐specific host Steinernema diaprepesi than when it was added concomitantly with other EPNs or with species of bacterial‐feeding nematodes. Just 6% of samples detected trace amounts of P. thiaminolyticus and P. popilliae exposed to the same experimental conditions. Thus, although the molecular assay detects Paenibacillus spp. DNA in nonphoretic associations, the levels are essentially background compared to the detection of Paenibacillus sp. in association with its nematode host.  相似文献   

17.
Entomoparasitic nematodes (EPNs) are being commercialized as a biocontrol measure for crop insect pests, as they provide advantages over common chemical insecticides. Mass production of these nematodes in liquid media has become a major challenge for commercialization. Producers are not willing to share the trade secrets of mass production and by doing so, have made culturing EPNs extremely difficult to advance existing technologies. Theoretically, mass production in liquid media is an ideal culturing method as it increases cost efficiency and nematode quantity. This paper will review current culturing methodologies and suggest basic culturing parameters for mass production. This review is focused on Heterorhabditis bacteriophora; however, this information can be useful for other nematode species.  相似文献   

18.
《Biological Control》2013,67(3):183-194
Since its first detection in 2005, the bacterial disease huanglongbing (HLB or citrus greening) has emerged as a critical threat to the citrus industry in Florida. An “Advanced Production System” (APS) could mitigate the impact of HLB by bringing citrus trees into production more quickly and economically than conventional citriculture methods. However, unlike conventional practices, APS fertigates plants daily, thereby changing the soil properties in ways that might impact soil biota. We tested the hypothesis that changes to soil properties caused by APS would affect the abundance of native entomopathogenic nematodes (EPNs) and/or the survival of augmented EPNs. The densities of organisms at different trophic levels were measured by real-time qPCR in three experiments conducted in an ongoing field experiment. Target organisms included 6 entompathogenic nematodes, 5 nematophagous fungi (NF) and a phoretic bacterium, Paenibacillus sp. Soil properties, free-living nematodes and citrus fibrous roots were also measured. Compared to soil under conventional citriculture (CC), APS increased soil pH and Mg content, while reducing the electrical conductivity, and content of K, Mn and Fe. The naturally occurring EPN Steinernema diaprepesi was 5 times less abundant in APS plots where these nematodes were more heavily encumbered by the phoretic bacterium Paenibacillus sp., which limits the foraging success of EPNs. In general, when EPNs were augmented in either treatment, fewer Steinernema riobrave than Heterorhabditis indica were recovered and recovery of both species declined rapidly over time. As seen with native S. diaprepesi, fewer augmented S. riobrave were recovered from APS plots in two of the three experiments, whereas the management system did not affect the recovery of H. indica. More of some endoparasitic and trapping NF were recovered from soil augmented with S. riobrave than with H. indica. However, variation in the responses of NF to the management systems suggests that these NF species were not primarily responsible for the steinernematid responses to APS. Although APS has the potential to reduce EPN populations and exacerbate herbivory by subterranean pests such as the root weevil Diaprepes abbreviatus, additional study of the physical causes of this effect may reveal ways to avoid the problem.  相似文献   

19.
20.
The positive influence of bacterial feeding nematodes on bacterial mediated processes such as organic matter mineralization and nutrient cycling is widely accepted, but the mechanisms of these interactions are not always apparent. Both transport of bacteria by nematodes, and nutritional effects caused by nematode N excretion are thought to be involved, but their relative importance is not known because of the difficulties in studying these interactions in soil. We developed a simple in vitro assay to study complex nematode/bacterial interactions and used it to conduct a series of experiments to determine the potential influence of nematode movement and nutritional effects on bacterial resource use. The system used bacterial feeding and nonfeeding insect parasitic nematodes, and luminescent bacteria marked with metabolic reporter genes. Both nutritional enhancement of bacterial activity and bacterial transport were observed and we hypothesize that in nature, the relative importance of transport is likely to be greater in bulk soil, whereas nematode excretion may have greater impact in the rhizosphere. In both cases, the ability of nematodes to enhance bacterial resource utilization has implications for soil components of biogeochemical cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号