共查询到20条相似文献,搜索用时 0 毫秒
1.
Frederik Hammes Nico Boon Johan de Villiers Willy Verstraete Steven Douglas Siciliano 《Applied microbiology》2003,69(8):4901-4909
During a study of ureolytic microbial calcium carbonate (CaCO3) precipitation by bacterial isolates collected from different environmental samples, morphological differences were observed in the large CaCO3 crystal aggregates precipitated within bacterial colonies grown on agar. Based on these differences, 12 isolates were selected for further study. We hypothesized that the striking differences in crystal morphology were the result of different microbial species or, alternatively, differences in the functional attributes of the isolates selected. Sequencing of 16S rRNA genes showed that all of the isolates were phylogenetically closely related to the Bacillus sphaericus group. Urease gene diversity among the isolates was examined by using a novel application of PCR-denaturing gradient gel electrophoresis (DGGE). This approach revealed significant differences between the isolates. Moreover, for several isolates, multiple bands appeared on the DGGE gels, suggesting the apparent presence of different urease genes in these isolates. The substrate affinities (Km) and maximum hydrolysis rates (Vmax) of crude enzyme extracts differed considerably for the different strains. For certain isolates, the urease activity increased up to 10-fold in the presence of 30 mM calcium, and apparently this contributed to the characteristic crystal formation by these isolates. We show that strain-specific calcification occurred during ureolytic microbial carbonate precipitation. The specificity was mainly due to differences in urease expression and the response to calcium. 相似文献
2.
The purpose of this research was to study how the bacteria Bacillus cereus (DCB1) utilizes calcium ions in a culture medium with carbon dioxide (CO2) to yield calcium carbonate (CaCO3). The bacteria strain DCB1 was a dominant strain isolated from dolomitic surfaces in areas of Karst topographies. The experimental method was as follows: a modified beef extract-peptone medium (beef extract 3.0 g, peptone 10 g, NaCl 5.0 g, CaCl2 2.0 g, glass powder 2.0 g, distilled water 1 L, and a pH between 6.5 and 7.5) was inoculated with B. cereus to attempt to induce the synthesis of CaCO3. The sample was then processed by centrifugation every 24 h during the 7-day cultivation period. The pH, carbonic anhydrase (CA) activity, and the concentrations of both HCO- 3 and Ca2+ in the supernatant fluid were measured. Subsequently, precipitation in the culture medium was analyzed to confirm, or otherwise, the presence and if present, the formation, of CaCO3. Methods used included X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive Spectroscopy (EDS). Meanwhile, the carbon source in the carbonate was classified by its isotope composition. Results showed that B. cereus can improve its pH value in this culture medium; concentrations of HCO- 3 and Ca2+ showed a significant decline over the duration of the cultivation period. CA activity reached its maximum during the second day; XRD, SEM, TEM, and isotope analysis all revealed the presence of CaCO3 as a precipitate. Additionally, these results did not occur in an aseptic control group: no detectable level of CaCO3 was produced therein. In conclusion: B. cereus can metabolize active materials, such as secretase, by its own growth and metabolism, and can either utilize atmospheric CO2, or respire, to induce CaCO3 production. Experimental evidence is offered for a concomitant CO2 reduction and CaCO3 induction by microorganisms. 相似文献
3.
Abstract The development of an interatomic potential for calcium carbonate is described. The potential is fitted to calcite and then transferred to aragonite. The calculated structure and trend in lattice energies are both compared with experimental values. 相似文献
4.
Ionotropic Nucleation of Calcium Carbonate by Molluscan Matrix 总被引:2,自引:0,他引:2
GREENFIELD EDWARD MICHAEL; WILSON DOUGLAS COURTNEY; CRENSHAW MILES AUBREY 《Integrative and comparative biology》1984,24(4):925-932
The hydrophilic, sulfated fraction of the organic matrix foundin molluscan shells appears to be involved in crystal nucleation.It is located primarily at the sites of initial nucleation.The hydrophilic fraction favors in vitro formation of calcifieddeposits, when it is fixed in place on the hydrophobic fraction.Calcium is bound by the hydrophillic fraction with high affinityand selectivity. Enzymatic desulfation reduces the calcium binding.However, the binding stoichiometry of one calcium for everytwo ester sulfates is not altered. The calcium binding induceslocal anion binding, which induces secondary calcium binding.This coordinated ion binding is known as ionotropy. The resultantlocal high concentration of ions is thought to bring about nucleation. 相似文献
5.
Eric D. Banks Nicholas M. Taylor Jason Gulley Brad R. Lubbers Juan G. Giarrizzo Heather A. Bullen 《Geomicrobiology journal》2013,30(5):444-454
To determine if microbial species play an active role in the development of calcium carbonate (CaCO 3 ) deposits (speleothems) in cave environments, we isolated 51 culturable bacteria from a coralloid speleothem and tested their ability to dissolve and precipitate CaCO 3 . The majority of these isolates could precipitate CaCO 3 minerals; scanning electron microscopy and X-ray diffractrometry demonstrated that aragonite, calcite and vaterite were produced in this process. Due to the inability of dead cells to precipitate these minerals, this suggested that calcification requires metabolic activity. Given growth of these species on calcium acetate, but the toxicity of Ca 2+ ions to bacteria, we created a loss-of-function gene knock-out in the Ca 2+ ion efflux protein ChaA. The loss of this protein inhibited growth on media containing calcium, suggesting that the need to remove Ca 2+ ions from the cell may drive calcification. With no carbonate in the media used in the calcification studies, we used stable isotope probing with C 13 O 2 to determine whether atmospheric CO 2 could be the source of these ions. The resultant crystals were significantly enriched in this heavy isotope, suggesting that extracellular CO 2 does indeed contribute to the mineral structure. The physiological adaptation of removing toxic Ca 2+ ions by calcification, while useful in numerous environments, would be particularly beneficial to bacteria in Ca 2+ -rich cave environments. Such activity may also create the initial crystal nucleation sites that contribute to the formation of secondary CaCO 3 deposits within caves. 相似文献
6.
Calcium Acetate or Calcium Carbonate for Hyperphosphatemia of Hemodialysis Patients: A Meta-Analysis
Background
High levels of serum phosphorus both at baseline and during follow-up are associated with increased mortality in dialysis patients, and administration of phosphate binders was independently associated with improved survival among hemodialysis population. Calcium-based phosphate binders are the most commonly used phosphate binders in developing countries for their relatively low costs.Objectives
To compare the efficacy and safety between calcium carbonate and calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients.Methods
PubMed, EMBASE, Cochrane Library, Google scholar and Chinese databases (Wanfang, Weipu, National Knowledge Infrastructure of China) were searched for relevant studies published before March 2014. Reference lists of nephrology textbooks and review articles were checked. A meta-analysis of randomized controlled trials (RCTs) and quasi-RCTs that assessed the effects and adverse events of calcium acetate and calcium carbonate in adult patients with MHD was performed using Review Manager 5.0.Results
A total of ten studies (625 participants) were included in this meta-analysis. There was insufficient data in all-cause mortality and cardiovascular events for meta-analysis. Compared with calcium carbonate group, the serum phosphorus was significantly lower in calcium acetate group after4 weeks’ administration (MD -0.15 mmol/L, 95% CI -0.28 to -0.01) and after 8 weeks’ administration (MD -0.25 mmol/L, 95% CI -0.40 to -0.11). There was no difference in serum calcium levels or the incidence of hypercalcemia between two groups at 4 weeks and 8 weeks. No statistical difference was found in parathyroid hormone (PTH) levels or serum calcium by phosphorus (Ca x P) product. There was significantly higher risk of intolerance with calcium acetate treatment (RR 3.46, 95% CI 1.48 to 8.26).Conclusions
For hyperphosphatemia treatment, calcium acetate showed better efficacy and with a higher incidence of intolerance compared with calcium carbonate. There are insufficient data to establish the comparative superiority of the two calcium-based phosphate binders on all-cause mortality and cardiovascular end-points in hemodialysis patients. 相似文献7.
《Geomicrobiology journal》2013,30(4):305-318
Coprecipitation in carbonate minerals offers a means of slowing the transport of divalent radionuclides and contaminant metals (e.g.,90Sr2+, UO2+, Co2+) in the subsurface. It may be possible to accelerate this process by stimulating the native microbial community to generate chemical conditions favoring carbonate precipitation. In a preliminary evaluation of this approach, we investigated the ability of ureolytic subsurface bacteria to produce alkaline conditions conducive to calcium carbonate precipitation. Groundwater samples from the Eastern Snake River Plain (ESRP) aquifer in Idaho were screened for urea-hydrolyzing microorganisms; three isolates were selected for further evaluation. Analysis of 16S rRNA gene sequences indicated that two of the ESRP isolates were of the genus Pseudomonas , and the other was a Variovorax sp. The specific urease activities of the ESRP isolates appeared to be similar to each other but less than that of Bacillus pasteurii , a known urease-positive organism. However, calcium carbonate was rapidly precipitated in all cultures that were supplied with urea and calcium, and X-ray diffraction analyses indicated that calcite was always the predominant carbonate polymorph produced. The correspondence between measured calcium concentrations and equilibrium predictions suggested that the rate of calcite precipitation was directly linked to the rate of urea hydrolysis. These results are promising with respect to the potential utility of this approach for in situ remediation and indicate that further evaluation of this approach under conditions more closely simulating environmental conditions is warranted. 相似文献
8.
Giovanni Ganendra Willem De Muynck Adrian Ho Eleni Charalampous Arvaniti Baharak Hosseinkhani Jose Angel Ramos Hubert Rahier Nico Boon 《Applied and environmental microbiology》2014,80(15):4659-4667
Microbially induced carbonate precipitation (MICP) applied in the construction industry poses several disadvantages such as ammonia release to the air and nitric acid production. An alternative MICP from calcium formate by Methylocystis parvus OBBP is presented here to overcome these disadvantages. To induce calcium carbonate precipitation, M. parvus was incubated at different calcium formate concentrations and starting culture densities. Up to 91.4% ± 1.6% of the initial calcium was precipitated in the methane-amended cultures compared to 35.1% ± 11.9% when methane was not added. Because the bacteria could only utilize methane for growth, higher culture densities and subsequently calcium removals were exhibited in the cultures when methane was added. A higher calcium carbonate precipitate yield was obtained when higher culture densities were used but not necessarily when more calcium formate was added. This was mainly due to salt inhibition of the bacterial activity at a high calcium formate concentration. A maximum 0.67 ± 0.03 g of CaCO3 g of Ca(CHOOH)2−1 calcium carbonate precipitate yield was obtained when a culture of 109 cells ml−1 and 5 g of calcium formate liter−1 were used. Compared to the current strategy employing biogenic urea degradation as the basis for MICP, our approach presents significant improvements in the environmental sustainability of the application in the construction industry. 相似文献
9.
10.
Clionid sponges are noted for their capacity to bore into calcareoussubstrates. During penetration the substrate is gradually destroyedas the sponge hollows out an extensive system of cavities andtunnels. Preliminary studies revealed that these excavationsare produced as small fragments of calcareous material are removedby a special type of amoebocyte which exhibits an etching activity.Cellular penetration occurs along the interface where thesecells contact the substrate and is characterized by a uniquepattern of cell-substrate relationships.Each active cell releasesa substance which dissolves the substrate around its edge, forminga linear etching which corresponds in size and shape to thecontours of the cell. Deeper etching occurs as the cell edge,moving gradually downward through the initial etching, sinksinto the substrate in a noose-like fashion. During this movementthe cell border is drawn down through the slit-like crevicecut by the cell edge, while the nucleus remains in positionon the surfaceof the substrate within the original etched outline.Eventually the undercutting action is completed and a smallchip is freed from the substrate. Penetration is achieved bythe precise cellular release of a chemical agent which dissolvesthe calcareous substrate along restricted zones of contact betweencell and substrate. 相似文献
11.
In this article, we present a previously unreported morphology of bacterially precipitated calcite (determined using XRD, FTIR, and SAED) occurring subaqueously in Weebubbie Cave. Observations using FESEM and TEM revealed spindle-shaped crystals with curved [hk.0] faces lying parallel to the c-axis. Calcite precipitated under conditions designed to mimic the inorganic solution chemistry of the cave revealed a different morphology. These differences between the crystals suggest that the formation of the cave crystals is a consequence of biologically activity. 相似文献
12.
Dog rose (Rosa canina L.) plants in the bloom stages of flowering were sprayed by indole-3-acetic acid (IAA) in concentrations of 0.06 and 0.60 mM and gibberellic acid (GA3) in concentrations of 0.60 and 1.50 mM. Ascorbic acid, total sugar, reducing sugar and carotenoid contents gradually increased, while the protein content remained unchanged and the content of phenolic substances decreased during hypanthium development. Ascorbic acid, total sugar, reducing sugar and carotenoid contents increased in hypanthium sprayed by GA3 and IAA. However, IAA and GA3 applications (except low concentrations) decreased contents of phenolic substances. IAA and GA applications might be a good way to produce the high quality hypanthium in R. canina. 相似文献
13.
Microbial precipitation of calcium carbonate takes place in nature by different mechanisms. One of them is microbially induced carbonate precipitation (MICP), which is performed due to bacterial hydrolysis of urea in soil in the presence of calcium ions. The MICP process can be adopted to reduce the permeability and/or increase the shear strength of soil. In this paper, a study on the use of Bacillus sp., which was isolated from tropical beach sand, to perform MICP either on the surface or in the bulk of sand is presented. If the level of calcium salt solution was below the sand surface, MICP took place in the bulk of sand. On the other hand, if the level of calcium salt solution was above the sand surface, MICP was performed on the sand surface and formed a thin layer of crust of calcium carbonate. After six sequential batch treatments with suspension of urease-producing bacteria and solutions of urea and calcium salt, the permeability of sand was reduced to 14 mm/day (or 1.6×10?7 m/s) in both cases of bulk and surface MICP. Quantities of precipitated calcium after six treatments were 0.15 and 0.60 g of Ca per cm2 of treated sand surface for the cases of bulk or surface MICP, respectively. The stiffness of the MICP treated sand also increased considerably. The modulus of rupture of the thin layer of crust was 35.9 MPa which is comparable with limestone. 相似文献
14.
《Geomicrobiology journal》2013,30(5):491-500
Natural precipitates of metastable polymorphs of CaCO 3 , such as vaterite, are rarely found in nature however, they have been widely synthesized in laboratory under particular conditions (ie, supersaturated solutions, relative high temperatures, etc.). By SEM and XRD we recognize vaterite spherulites from culturable microbial colonies isolated from hypogean environments. Spherical bodies (∽10μin diameter), probably composed of vaterite, occur in submilimetric microbial mats and biofilms on volcanic substrates (Saint Callixtus Catacombs, Rome, Italy) and karstic caves (Altamira, Candamo, and Tito Bustillo caves, Spain, and Grotta dei Cervi, Italy) where cyanobacteria and actinomycetes are the major microbial components. These particles form beneath dense biofilms, where particular physicochemical conditions are developed by the microbial activity. Natural biofilms seems to generate microenvironments favoring the formation and preservation of metastable CaCO 3 polymorphs. This also shows a major role of microbes in processes of low-temperature alteration of different hypogean rock-substrates. 相似文献
15.
16.
Tang J Sun DM Qian WY Zhu RR Sun XY Wang WR Li K Wang SL 《Biological trace element research》2012,147(1-3):408-417
Bulk fabrication of ordered hollow structural particles (HSPs) with large surface area and high biocompatibility simultaneously is critical for the practical application of HSPs in biosensing and drug delivery. In this article, we describe a smart approach for batch synthesis of calcium carbonate nanotubes (CCNTs) based on supported liquid membrane (SLM) with large surface area, excellent structural stability, prominent biocompatibility, and acid degradability. The products were characterized by transmission electron micrograph, X-ray diffraction, Fourier transform infrared spectra, UV-vis spectroscopy, zeta potential, and particle size distribution. The results showed that the tube-like structure facilitated podophyllotoxin (PPT) diffusion into the cavity of hollow structure, and the drug loading and encapsulation efficiency of CCNTs for PPT are as high as 38.5 and 64.4 wt.%, respectively. In vitro drug release study showed that PPT was released from the CCNTs in a pH-controlled and time-dependent manner. The treatment of HEK 293T and SGC 7901 cells demonstrated that PPT-loaded CCNTs were less toxic to normal cells and more effective in antitumor potency compared with free drugs. In addition, PPT-loaded CCNTs also enhanced the apoptotic process on tumor cells compared with the free drugs. This study not only provides a new kind of biocompatible and pH-sensitive nanomaterial as the feasible drug container and carrier but more importantly establishes a facile approach to synthesize novel hollow structural particles on a large scale based on SLM technology. 相似文献
17.
Béatrice Marquèze-Pouey Sébastien Mailfert Vincent Rouger Jean-Marc Goaillard Didier Marguet 《PloS one》2014,9(9)
Signaling mediated by the epidermal growth factor (EGF) is crucial in tissue development, homeostasis and tumorigenesis. EGF is mitogenic at picomolar concentrations and is known to bind its receptor on high affinity binding sites depending of the oligomerization state of the receptor (monomer or dimer). In spite of these observations, the cellular response induced by EGF has been mainly characterized for nanomolar concentrations of the growth factor, and a clear definition of the cellular response to circulating (picomolar) concentrations is still lacking. We investigated Ca2+ signaling, an early event in EGF responses, in response to picomolar doses in COS-7 cells where the monomer/dimer equilibrium is unaltered by the synthesis of exogenous EGFR. Using the fluo5F Ca2+ indicator, we found that picomolar concentrations of EGF induced in 50% of the cells a robust oscillatory Ca2+ signal quantitatively similar to the Ca2+ signal induced by nanomolar concentrations. However, responses to nanomolar and picomolar concentrations differed in their underlying mechanisms as the picomolar EGF response involved essentially plasma membrane Ca2+ channels that are not activated by internal Ca2+ store depletion, while the nanomolar EGF response involved internal Ca2+ release. Moreover, while the picomolar EGF response was modulated by charybdotoxin-sensitive K+ channels, the nanomolar response was insensitive to the blockade of these ion channels. 相似文献
18.
Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO3
− as the first ionic interaction partner, but not necessarily for Ca2+
. The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals. 相似文献
19.
Tsuyoshi Takashima Toru Sanai Motoaki Miyazono Makoto Fukuda Tomoya Kishi Yasunori Nonaka Mai Yoshizaki Sae Sato Yuji Ikeda 《PloS one》2014,9(5)
Lanthanum carbonate (LA) is an effective phosphate binder. Previous study showed the phosphate-binding potency of LA was twice that of calcium carbonate (CA). No study in which LA and CA were given at an equivalent phosphate-binding potency to rats or humans with chronic renal failure for a long period has been reported to date. The objective of this study was to compare the phosphate level in serum and urine and suppression of renal deterioration during long-term LA and CA treatment when they were given at an equivalent phosphate-binding potency in rats with adriamycin (ADR)-induced nephropathy. Rats were divided into three groups: an untreated group (ADR group), a CA-treated (ADR-CA) group and a LA-treated (ADR-LA) group. The daily oral dose of LA was 1.0 g/kg/day and CA was 2.0 g/kg/day for 24 weeks. The serum phosphate was lower in the ADR-CA or ADR-LA group than in the ADR group and significantly lower in the ADR-CA group than in the ADR group at each point, but there were no significant differences between the ADR and ADR-LA groups. The serum phosphate was also lower in the ADR-CA group than in the ADR-LA group, and there was significant difference at week 8. The urinary phosphate was significantly lower in the ADR-CA group than in the ADR or ADR-LA group at each point. The urinary phosphate was also lower in the ADR-LA group than in the ADR group at each point, and significant difference at week 8. There were no significant differences in the serum creatinine or blood urea nitrogen among the three groups. In conclusion, this study indicated the phosphate-binding potency of LA isn’t twice as strong as CA, and neither LA nor CA suppressed the progression of chronic renal failure in the serum creatinine and blood urea nitrogen, compared to the untreated group. 相似文献
20.
Gaasch JA Geldenhuys WJ Lockman PR Allen DD Van der Schyf CJ 《Neurochemical research》2007,32(10):1686-1693
Recent studies suggest that iron enters cardiomyocytes via the L-type voltage-gated calcium channel (VGCC). The neuronal VGCC
may also provide iron entry. As with calcium, extraneous iron is associated with the pathology and progression of neurodegenerative
diseases such as Parkinson’s and Alzheimer’s disease. VGCCs, ubiquitously expressed, may be an important route of excessive
entry for both iron and calcium, contributing to cell toxicity or death. We evaluated the uptake of 45Ca2+ and 55Fe2+ into NGF-treated rat PC12, and murine N-2α cells. Iron not only competed with calcium for entry into these cells, but iron
uptake (similar to calcium uptake) was inhibited by nimodipine, a specific L-type VGCC blocker, and enhanced by FPL 64176,
an L-VGCC activator, in a dose-dependent manner. Taken together, these data suggest that voltage-gated calcium channels are
an alternate route for iron entry into neuronal cells under conditions that promote cellular iron overload toxicity.
Special issue dedicated to Dr. Moussa Youdim. 相似文献