首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
An analysis of the energy return on investment (EROI) of natural gas obtained from horizontal, hydraulically fractured wells in the Marcellus Shale was conducted using net external energy ratio methodology and available data and estimates of energy inputs and outputs. Used as sources of input data were estimates of carbon dioxide and nitrogen oxides emitted from the gas extraction processes, as well as fuel‐use reports from industry and other sources. Estimates of quantities of materials used and the associated embodied energy as well as other energy‐using steps were also developed from available data. Total input energy was compared with the energy expected to be made available to end users of the natural gas produced from a typical Marcellus well. The analysis indicates that the EROI of a typical well is likely between 64:1 and 112:1, with a mean of approximately 85:1. This range assumes an estimated ultimate recovery (EUR) of 3.0 billion cubic feet (Bcf) per well. EROI values are directly proportionate to EUR values. If the EUR is greater or lesser than 3 Bcf, the EROI would be proportionately higher or lower. EROI is also sensitive to the energy used or embedded in gathering and transmission pipelines and associated infrastructure and energy used for their construction, energy consumed in well drilling and well completion, and energy used for wastewater treatment.  相似文献   

2.
This first article of a two‐article series describes a framework and life cycle–based model for typical almond orchard production systems for California, where more than 80% of commercial almonds on the world market are produced. The comprehensive, multiyear, life cycle–based model includes orchard establishment and removal; field operations and inputs; emissions from orchard soils; and transport and utilization of co‐products. These processes are analyzed to yield a life cycle inventory of energy use, greenhouse gas (GHG) emissions, criteria air pollutants, and direct water use from field to factory gate. Results show that 1 kilogram (kg) of raw almonds and associated co‐products of hulls, shells, and woody biomass require 35 megajoules (MJ) of energy and result in 1.6 kg carbon dioxide equivalent (CO2‐eq) of GHG emissions. Nitrogen fertilizer and irrigation water are the dominant causes of both energy use and GHG emissions. Co‐product credits play an important role in estimating the life cycle environmental impacts attributable to almonds alone; using displacement methods results in net energy and emissions of 29 MJ and 0.9 kg CO2‐eq/kg. The largest sources of credits are from orchard biomass and shells used in electricity generation, which are modeled as displacing average California electricity. Using economic allocation methods produces significantly different results; 1 kg of almonds is responsible for 33 MJ of energy and 1.5 kg CO2‐eq emissions. Uncertainty analysis of important parameters and assumptions, as well as temporary carbon storage in orchard trees and soils, are explored in the second article of this two‐part article series.  相似文献   

3.
饲料中不同脂肪源对黄鳝生长和组织中脂肪酸含量的影响   总被引:4,自引:0,他引:4  
用6种不同脂肪源:鱼油(FO)、亚麻油(LO)、大豆油(SO)、二十碳四稀酸(ARA)+花生油(APO)、花生油(PO)和猪油(PL),配制了6组含脂量为8%的等氮(44%粗蛋白)、等能(19.4 MJ/kg)饲料,喂养黄鳝10周后,其结果显示:饲料中不同脂肪源对黄鳝的生长有影响。PO组的特定生长率(SGR)最低,显著低于SO、FO组(P<0.05);SO组的SGR显著高于除FO组之外的其他各组(P<0.05)。黄鳝组织中的18:3n-3和18:2n-6含量与饲料中的对应脂肪酸含量呈线性相关,缺乏ARA的试验组黄鳝各组织中ARA的含量与饲料中的18:2n-6含量存在弱的线性相关;但在各组织中ARA的含量均显著低于APO组(P<0.05)。缺乏二十碳五烯酸(EPA)、二十二碳六烯酸(DHA)的LO、SO、PL、PO各组,卵巢中的EPA和DHA含量与饲料中的18:3n-3含量呈对数函数相关;但在各组织中EPA、DHA的含量均显著低于FO组(P<0.05)。结果表明n-3多不饱和脂肪酸(PUFA)是黄鳝生长重要的脂肪酸,黄鳝生长需要一个适宜的n-6/n-3比值;大豆油、亚麻油、猪油替代鱼油可基本满足黄鳝生长对脂肪酸的需要,其中以大豆油最佳。黄鳝可合成长链多不饱和脂肪酸(LC-PUFA),但合成LC-PUFA的量有限。  相似文献   

4.
Emerging regulations require an examination of corn ethanol’s greenhouse gas emissions on a life cycle basis, including emissions from energy consumed at the plant level. However, comprehensive survey data of the industry’s average performance dates back to 2001, prior to the industry’s expansion phase. Responding to the need for updated data, we conducted a survey to collect energy and processing data for average dry mill ethanol produced during 2008. The study finds that the average liter of anhydrous corn ethanol produced during 2008 requires 28% less thermal energy than 2001 ethanol: 7.18 MJ/l compared to 10 MJ/l. Also, 2008 ethanol requires 32% less electricity: 0.195 kWh/l compared to 0.287 kWh/l, but anhydrous ethanol yields from corn are 5.3% higher and total 0.416 l/kg compared to 0.395 l/kg. Findings also suggest that older plants installed energy efficiency retrofits.  相似文献   

5.
Energy budgets for agricultural production can be used as building blocks for life-cycle assessments that include agricultural products, and can also serve as a first step toward identifying crop production processes that benefit most from increased efficiency. A general trend toward increased energy efficiency in U.S. agriculture has been reported. For wheat cultivation, in particular, this study updates cradle-to-gate process analyses produced in the seventies and eighties. Input quantities were obtained from official U.S. statistics and other sources and multiplied by calculated or recently published energy coefficients. The total energy input into the production of a kilogram of average U.S. wheat grain is estimated to range from 3.1 to 4.9 MJ/kg, with a best estimate at 3.9 MJ/kg. The dominant contribution is energy embodied in nitrogen fertilizer at 47% of the total energy input, followed by diesel fuel (25%), and smaller contributions such as energy embodied in seed grain, gasoline, electricity, and phosphorus fertilizer. This distribution is reflected in the energy carrier mix, with natural gas dominating (57%), followed by diesel fuel (30%). High variability in energy coefficients masks potential gains in total energy efficiency as compared to earlier, similar U.S. studies. Estimates from an input-output model for several input processes agree well with process analysis results, but the model's application can be limited by aggregation issues: Total energy inputs for generic food grain production were lower than wheat fertilizer inputs alone, possibly due to aggregation of diverse products into the food grain sector.  相似文献   

6.
石油烃的厌氧生物降解对油藏残余油气化开采的启示   总被引:1,自引:0,他引:1  
利用微生物将油藏中难以动用的原油就地转化为甲烷,以天然气的形式开采、或作为战略资源就地储备,从而大幅度提高油气资源的利用率,是当前国际上研究的前沿课题。本文综述了石油烃厌氧生物降解转化为甲烷的菌群结构、反应热力学和反应动力学等基础科学问题的最新研究进展,讨论了油藏残余油气化开采技术的可行性及开发潜力,提出了该技术进一步研究的方向。  相似文献   

7.
Sugar beet (Beta vulgaris L. subsp. vulgaris) is deemed to be one of the most promising bioethanol feedstock crops in northern Japan. To establish viable sugar beet‐based bioethanol production systems, energy‐efficient protocols in sugar beet cultivation are being intensively sought. On this basis, the effects of alternative agronomic practices for sugar beet production on total energy inputs (from fuels and agricultural materials during cultivation and transportation) and ethanol yields (estimated from sugar yields) were assessed in terms of (i) direct drilling, (ii) reduced tillage (no moldboard plowing), (iii) no‐fungicide application, (iv) using a high‐yielding beet genotype, (v) delayed harvesting and (vi) root+crown harvesting. Compared with the conventional sugar beet production system used in the Tokachi region of Hokkaido, northern Japan, which makes use of transplants, direct drilling and no‐fungicide application contributed to reduced energy inputs from raising seedlings and fungicides, respectively, but sugar (or ethanol) yields were also reduced by these practices, to a greater equivalent extent than the reductions in energy inputs. Consequently, direct drilling (6.84 MJ L?1) and no‐fungicide application (7.78 MJ L?1) worsened the energy efficiency (total energy inputs to produce 1 L of ethanol), compared with conventional sugar beet production practices (5.82 MJ L?1). Sugar yields under conventional plow‐based tillage and reduced tillage practices were similar, but total energy inputs were reduced as a result of reduced fuel consumption from not plowing. Hence, reduced tillage showed improved energy efficiency (5.36 MJ L?1). The energy efficiency was also improved by using a high‐yielding genotype (5.23 MJ L?1) and root+crown harvesting (5.21 MJ L?1). For these practices, no major changes in total energy inputs were noted, but sugar yields were consistently increased. Neither total energy inputs nor ethanol yields were affected by extending the vegetative growing period by delaying harvesting.  相似文献   

8.
This article presents mass balances and a detailed life cycle assessment (LCA) for energy and greenhouse gases (GHGs) of a simulated microalgae biodiesel production system. Key parameters of the system include biomass productivity of 16 and 25 g m?2 day?1 and lipid content of algae of 40% and 25% for low and normal nitrogen conditions respectively. Based on an oil extraction efficiency from wet biomass of 73.6% and methane yields from anaerobically digested lipid‐extracted biomass of 0.31 to 0.34 l per gram of volatile solids, the mass balance shows that recycling growth media and recovering nutrients from residual biomass through anaerobic digestion can reduce the total demand for nitrogen by 66% and phosphorus by 90%. Freshwater requirements can be reduced by 89% by recirculating growth media, and carbon requirements reduced by 40% by recycling CO2 from biogas combustion, for normal nitrogen conditions. A variety of technology options for each step of the production process and allocation methods for coproducts used outside the production system are evaluated using LCA. Extensive sensitivity and scenario analysis is also performed to provide better understanding of uncertainty associated with results. The best performing scenario consists of normal nitrogen cultivation conditions, bioflocculation and dissolved air flotation for harvesting, centrifugation for dewatering, wet extraction with hexane, transesterification for biodiesel production, and anaerobic digestion of biomass residual, which generates biogas used in a combined heat and power unit for energy recovery. This combination of technologies and operating conditions results in life cycle energy requirements and GHG emissions of 1.02 MJ and 71 g CO2‐equivalent per MJ of biodiesel, with cultivation and oil extraction dominating energy use and emissions. Thus, even under optimistic conditions, the near‐term performance of this biofuel pathway does not achieve the significant reductions in life cycle GHG emissions hoped for from second‐generation biofuel feedstocks.  相似文献   

9.
Currently, fossil materials form the majority of our energy and chemical source. Many global concerns force us to rethink about our current dependence on the fossil energy. Limiting the use of these energy sources is a key priority for most countries that pledge to reduce greenhouse gas emissions. The application of biomass, as substitute fossil resources for producing biofuels, plastics and chemicals, is a widely accepted strategy for sustainable development. Aquatic plants including algae possess competitive advantages as biomass resources compared to the terrestrial plants in this current global situation. Bio‐oil production from algal biomass is technically and economically viable, cost competitive, requires no capacious lands and minimal water use and reduces atmospheric carbon dioxide. The aim of this paper is to review the potential of converting algal biomass, as an aquatic plant, into high‐quality crude bio‐oil through applicable processes in Malaysia. In particular, bio‐based materials and fuels from algal biomass are considered as one of the reliable alternatives for clean energy. Currently, pyrolysis and hydrothermal liquefaction (HTL) are two foremost processes for bio‐oil production from biomass. HTL can directly convert high‐moisture algal biomass into bio‐oil, whereas pyrolysis requires feedstock drying to reduce the energy consumption during the process. Microwave‐assisted HTL, which can be conducted in aqueous environment, is suitable for aquatic plants and wet biomass such as algae.  相似文献   

10.
To meet the demand of its fast growing economy, China has become already the second largest buyer of crude oil. China is facing critical problems of energy shortage and environment deterioration. Rational and efficient energy use and environment protection are both getting more attention in China. Biomass energy is renewable energy made from biological sources. China's biomass resources are abundant, which could provide energy for future social and economic development. However technologies for biomass resource conversion in China are still just beginning. In this paper, current biomass resource distribution and technologies of biomass energy, including power generation, biofuel production and biomass-based chemical production are reviewed.  相似文献   

11.
Microorganisms growing on a mineral medium with crude oil and its light fractions as only carbon and energy sources have been isolated from samples of oil-polluted soils collected in the Usa District (Komi Republic, Russia). For the first time, hydrocarbon-oxidizing psychrophilic bacteria of the genus Cytophaga have been found that are clearly capable of consuming crude oil hydrocarbons. A method for cultivating microorganisms on porous plastic is proposed. The data from the literature on the response of soil microbiota to oil pollution indicate that the pollution can activate or suppress the growth of various physiological groups of microorganisms [1]. Different soil and climatic conditions and pollution levels can give rise to different microbial cenoses, which include different associations and predominant microbial species.  相似文献   

12.
We investigated the system expansion approach to net energy analysis for ethanol production from domestic corn grain. Production systems included in this study are ethanol production from corn dry milling and corn wet milling, corn grain production (the agricultural system), soybean products from soybean milling (i.e. soybean oil and soybean meal) and urea production to determine the net energy associated with ethanol derived from corn grain. These five product systems are mutually interdependent. That is, all these systems generate products which compete with or displace all other comparable products in the market place. The displacement ratios between products compare the equivalence of their marketplace functions. The net energy, including transportation to consumers, is 0.56 MJnet/MJ of ethanol from corn grain regardless of the ethanol production technology employed. Using ethanol as a liquid transportation fuel could reduce domestic use of fossil fuels, particularly petroleum. Sensitivity analyses show that the choice of allocation procedures has the greatest impact on fuel ethanol net energy. Process energy associated with wet milling, dry milling and the corn agricultural process also significantly influences the net energy due to the wide ranges of available process energy values. The system expansion approach can completely eliminate allocation procedures in the foreground system of ethanol production from corn grain.  相似文献   

13.
This meta-study quantitatively and qualitatively compares 21 published life cycle assessment (LCA)-type studies for energy consumption and greenhouse gas (GHG) emissions of maize production in the USA. Differences between the methodologies and numerical results obtained are described. Nonrenewable energy consumption in maize production (from cradle-to-farm gate) ranges from 1.44 to 3.50 MJ/kg of maize, and GHG emissions associated with maize production range from ?27 to 436 g CO2 equivalent/kg of maize. Large variations between studies exist within the input data for lime application, fuels purchased, and life cycle inventory data for fertilizer and agrochemical production. Although most studies use similar methodological approaches, major differences between studies include the following: (1) impacts associated with human labor and farm machinery production, (2) changes in carbon dioxide emissions resulting from soil organic carbon levels, and (3) indirect N2O emissions.  相似文献   

14.
A vinasse, originating as the condensed molasses residue from the microbial production of citric acid, was chemically analyzed and given to growing pigs to determine its protein and energy value. It contained, per kg dry matter (62.6%), 185 g crude protein, 538 g N-free extracts, 48 g total sugar, 277 g ash and 12.8 MJ gross energy. Ammonia, betaine and amino acids (about half glutamic acid) accounted for 3.5, 9.1 and 28.6%, respectively, of the crude-protein N. In a 25-day balance trial with the final 10 days as collection period, ten pigs initially weighing 33 kg were pair-fed daily an average of about 1 kg of dry matter of either a basal diet (95% ground barley plus 5% cellulose) or of a mixed diet composed of, on dry basis, 77% basal diet plus 23% vinasse. Partial digestibility of components in the vinasse was: organic matter, 52%; crude protein, 45%; N-free extract, 58%; ash, 83%; and gross energy, 42%. Average daily gain and N retention were not different between dietary groups. The vinasse contained, per kg dry matter, 5.40 MJ DE and 3.61 MJ ME compared with 14.96 MJ DE and 14.48 MJ ME for the dry basal diet. The conclusion is that this vinasse, according to its low protein and energy value, can provide only a small percentage of the daily ration for pigs.  相似文献   

15.
The aim of the present study was to determine equations that predict ME in total mixed rations (TMR) based on routine methods. The ME content of 30 TMR for dairy cows was determined based on digestible crude nutrients obtained with wether sheep. Concentrations in the TMR (in g/kg DM) varied between 118 and 234 for crude protein, 26 and 48 for crude lipid, 131 and 250 for crude fibre, 281 and 488 for NDF, and 173 and 304 for ADF. Gas production ranged from 40.7 to 54.1 ml/200 mg DM, and enzymatically degraded organic matter from 652 to 800 g/kg DM. Digestibility [%] ranged from 68.6 to 84.0 for organic matter, from 55.6 to 84.3 for crude lipid, from 55.0 to 77.8 for crude fibre, from 57.6 to 77.0 for NDF and from 53.1 to 79.6 for ADF. ME ranged from 9.6 to 11.9 MJ/kg DM, and NEL from 5.7 to 7.4 MJ/kg DM. ME content was highly correlated with the concentration of both crude fibre and enzymatically degradable organic matter as well as with organic matter digestibility. A multiple regression equation based on crude fibre and crude lipid predicted ME with a reasonable goodness of fit (r2 = 0.81; sy.x = 2.4%). The inclusion of other nutrients, of neutral and acid detergent fibre, neither of gas production did improve the goodness of fit. The best prediction was achieved with inclusion of enzymatically degraded organic matter (r2 = 0.90; sy.x = 1.7%).  相似文献   

16.
Two experiments were conducted to determine the content of digestible energy (DE) and metabolisable energy (ME) as well as the apparent ileal digestibility (AID) and standardised ileal digestibility (SID) of amino acids in peanut meal (PNM) for growing pigs. In Experiment 1, 78 growing pigs (46.8 ± 2.6 kg) were randomly allotted to 1 of 13 diets, including a corn–soya bean meal basal diet and 12 PNM test diets. In Experiment 2, 12 growing barrows (48.7 ± 2.8 kg) were allotted to one of two 6 × 6 Latin squares. The treatments include a N-free diet and 10 PNM test diets. The results of Experiment 1 showed that the DE and ME differed (p < 0.05) among the 12 PNM samples. On a dry matter basis, the DE and ME content ranged from 14.5 to 16.4 MJ/kg (mean 15.6 MJ/kg) and from 12.7 to 15.5 MJ/kg (mean 13.9 MJ/kg), respectively. The apparent total tract digestibility (ATTD) of gross energy (GE) was 82.2%. The DE of PNM could be precisely predicted by equations including NDF combined with GE or crude protein (CP) with an R2 value of 0.91 and 0.92, respectively. For the AID and SID for lysine, the results of Experiment 2 indicated variations among PNM sources ranging from 59.6% to 76.7% and 64.8% to 80.9%, respectively. However, for CP, variations for AID and SID were lower and ranged from 70.2% to 81.9% and 75.7% to 85.6%, respectively. The results indicate that the concentration of lysine was the best single predictor to estimate the digestibility of amino acids. However, further work is needed to investigate the reason for the variation in the digestibility of lysine and avoid processing procedures that are detrimental to lysine digestibility.  相似文献   

17.
丁酸作为一种重要的化工原料,已经广泛应用于食品添加剂与医药等领域。目前,工业上生产丁酸主要是从石油中提取有机化合物进行化学合成。与有机化合物合成法相比,微生物发酵产丁酸的优势有:所用的原料来源非常广,发酵过程低能耗,不污染环境,而且可以持续添加原料发酵生产丁酸。因此,通过生物技术发酵生产丁酸越来越受到人们的重视。介绍了丁酸的性质、产丁酸菌株的特点、微生物发酵产丁酸的细胞代谢途径及其调控、发酵法生产丁酸的工艺运行方式和产丁酸菌株及其代谢产物的生理功能这五部分内容,以期为今后开展发酵法产丁酸的微生物基因工程改造以及生产工艺的优化提供参考。  相似文献   

18.
Two different methods for Life Cycle Inventory (LCI) applied to the dairy industry was performed at two dairies. In the simplified method, total environmental loads from a dairy was registred and allocated to liquid milk. Energy and emissions are measured for each process step for the detailed method. Both methods have advantages and disadvantages. The simplified method captures all energy and emissions of dairy processing, but treats the dairy as a “black box”. The energy consumption was found to be 1, 27 MJ/1 and 2,55 MJ/1 for the two dairies. By use of the detailed method it is easy to “loose” information, and it is very time consuming. The energy consumption was lower than for the simplified method. The environmental loads can on the other hand be divided on the different process steps. The main conclusion is that choice of method depends on the purpose of the LCA-study.  相似文献   

19.

Purpose

In life cycle impact assessment, various proposals have been made on how to characterise fossil resource scarcity, but they lack appropriateness or completeness. In this paper, we propose a method to assess fossil resource scarcity based on surplus cost, which is the global future cost increase due to marginal fossil resource used in the life cycle of products.

Methods

The marginal cost increase (MCI in US dollars in the year 2008 per kilogram per kilogram produced) is calculated as an intermediate parameter for crude oil, natural gas and coal separately. Its calculations are based on production cost and cumulative future production per production technique or country. The surplus cost (SC in US dollars in the year 2008 per kilogram) is calculated as an indicator for fossil resource scarcity. The SC follows three different societal perspectives used to differentiate the subjective choices regarding discounting and future production scenarios.

Results and discussion

The hierarchist perspective SCs of crude oil, natural gas, and coal are 2.9, 1.5, and 0.033 US$2008/GJ, respectively. The ratios between the indicators of the different types of fossil resources (crude oil/natural gas/coal) are rather constant, except in the egalitarian perspective, where contrastingly no discounting is applied (egalitarian 100:47:21; hierarchist 100:53:1.1; individualist 100:34:0.6). The ratio of the MCIs (100:48:1.0) are similar to the individualist and hierarchist SC ratios.

Conclusions

In all perspectives, coal has a much lower resource scarcity impact factor per gigajoule and crude oil has the highest. In absolute terms of costs per heating value (US dollars in the year 2008 per gigajoule), there are large differences between the SCs for each perspective (egalitarian > hierarchist > individualist).  相似文献   

20.
Abstract: This article reports an assessment of the global warming potential associated with the life cycle of a biopolymer (poly(hydroxyalkanoate) or PHA) produced in genetically engineered corn developed by Monsanto. The grain corn is harvested in a conventional manner, and the polymer is extracted from the corn stover (i.e., residues such as stalks, leaves and cobs), which would be otherwise left on the field. While corn farming was assessed based on current practice, four different hypothetical PHA production scenarios were tested for the extraction process. Each scenario differed in the energy source used for polymer extraction and compounding, and the results were compared to polyethylene (PE). The first scenario involved burning of the residual biomass (primarily cellulose) remaining after the polymer was extracted from the stover. In the three other scenarios, the use of conventional energy sources of coal, oil, and natural gas were investigated. This study indicates that an integrated system, wherein biomass energy from corn stover provides energy for polymer processing, would result in a better greenhouse gas profile for PHA than for PE. However, plant-based PHA production using fossil fuel sources provides no greenhouse gas advantage over PE, in fact scoring worse than PE. These results are based on a "cradle-to-pellet" modeling as the PHA end-of-life was not quantitatively studied due to complex issues surrounding the actual fate of postconsumer PHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号