首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was to investigate whether neuromuscular adaptations at the site of injury or neural adaptation remote to the injury are affected in individuals with chronic ankle instability (CAI). Electromyography data were collected from the peroneus longus (PL) and tibialis anterior during an ankle joint reaction time task in 12 participants with unilateral CAI and 12 healthy control participants. Following an auditory cue, time to onset of muscle activity (pre-motor time) and time from onset of muscle activity to movement (motor time) were measured during rapid ankle eversion and dorsiflexion. Reaction time for ankle eversion on the affected side was significantly slower in the CAI group than the control group, due to significantly slower motor time for the PL. Changes in motor time for the affected PL in participants with CAI may be attributed to a combination of factors associated with local tissue changes.  相似文献   

2.
To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.  相似文献   

3.
Estimation of instantaneous moment arms of lower-leg muscles   总被引:2,自引:0,他引:2  
Muscle moment arms at the human knee and ankle were estimated from muscle length changes measured as a function of joint flexion angle in cadaver specimens. Nearly all lower-leg muscles were studied: extensor digitorum longus, extensor hallucis longus, flexor digitorum longus, flexor hallucis longus, gastrocnemius lateralis, gastrocnemius medialis, peroneus brevis, peroneus longus, peroneus tertius, plantaris, soleus, tibialis anterior, and tibialis posterior. Noise in measured muscle length was filtered by means of quintic splines. Moment arms of the mm. gastrocnemii appear to be much more dependent on joint flexion angles than was generally assumed by other investigators. Some consequences for earlier analyses are mentioned.  相似文献   

4.
The purpose of this study was to evaluate the neuromuscular adaptation that occurred with aging, by comparing young and aged subjects with respect to changes in surface EMG from the tibialis anterior muscle during fatiguing contractions. EMG variables such as the averaged rectified value (ARV), median frequency (MDF), and muscle fiber conduction velocity (MFCV) were calculated during maximal (MVC, 3 sec) and submaximal (60% MVC, 60 sec) isometric contractions. Muscular force, ARV, MDF, and MFCV during MVC were significantly greater in the young than in the elderly (p < 0.05). EMG amplitude increased and the waveform slowed in all subjects during submaximal contractions, indicating the development of local muscle fatigue. As fatigue progressed, the ARV increased and the MDF and MFCV decreased significantly (p < 0.01). The fatigue-induced changes in the MDF and MFCV were significantly smaller in aged than in young subjects (p < 0.05), a trend also seen in the ARV change, which means that the elderly cannot be fatigued as much as the young with contractions of the same relative intensity. These results as a whole suggest that the aged subjects hold an adaptive motor strategy to cope with age-related neuromuscular deteriorations, due to the decline of motor unit activation and selective atrophy of fast twitch muscle fibers.  相似文献   

5.
The increase in stiffness of cat peroneus longus muscle elicited by the contraction of homogeneous groups of motor units (slow, fast fatigue-resistant and fast fatigable) was measured during sinusoidal stretches (20-80 Hz) of small amplitude (40-100 micron). For comparable tetanic tensions, slow units increase muscle stiffness more than fast unit.  相似文献   

6.
The length-force relations of nine different skeletal muscles in the hindlimb of the cat were determined experimentally, with electrical stimulation of the sciatic nerve as the activation mode. It was shown that the active-, passive-, and total-force patterns varied widely among the muscles. The tibialis posterior (TP), medial and lateral gastrocnemius (MG, LG) and flexor digitorum longus (FDL) had a symmetric active-force curve, whereas the tibialis anterior (TA), peroneus brevis (PB), peroneus longus (PL), extensor digitorum longus (EDL), and soleus (SOL) had an asymmetric curve which exhibits about 25% of the maximal isometric force at extreme lengths. The SOL, EDL, and LG had a low-level passive force which appeared at short muscle length, whereas all other muscles exhibited initial passive force just before the optimal length. The total force was rising quasi-linearly for the SOL, whereas the other muscles exhibited an intermediate plateau about the optimal length. The LG and FDL had a substantial but temporary intermediate dip in the total force as the muscle was elongated past the optimal length. The elongation range of the various muscles also varied, ranging from +/- 15 to +/- 30% of the optimal length. The elongation range was symmetric for the FDL, LG, MG, TP, SOL, and EDL, and asymmetric for the PL, PB, and TA, being -12 to + 17%, -12 to + 17%, and -35 to + 12%, respectively. Two different models which incorporate muscle architecture were successfully fitted to the experimental data of the muscles except for the MG and TA. The architecture of these two muscles is highly nonhomogeneous and contains compartments with two pennation patterns or two different optimal lengths. New models, which add spatially and temporally the individual characteristics of each compartment of the muscles, were constructed for these two muscles. The new models demonstrated high correlation to the experimental data obtained from the MG and TA. It was concluded that the length-force relation varies widely among various skeletal muscles and is probably dependent on the primary function of the muscle in the context of integrated movement; this is a manifestation of architectural factors such as fiber pennation pattern and angle, cross-sectional area, ratio of muscle to tendon length, distribution of the fiber length within the muscle and compartmental pennation.  相似文献   

7.
Euprimate grasping feet are characterized by a suite of morphological traits, including an enlarged peroneal process on the base of the first metatarsal, which serves as the insertion site of the peroneus longus muscle. In prosimians, a large process has typically been associated with a powerful hallucal grasp via the contraction of the peroneus longus to adduct the hallux. Recent electromyography (EMG) studies have documented that peroneus longus does not contribute substantially to hallucal grasping in lemurids (Boyer et al., 2007). However, non-lemurid prosimians have a I-V opposable grasp complex that is morphologically different and phylogenetically more primitive than the I-II adductor grasp complex of the lemurids previously studied. Therefore, it is possible that peroneus longus did function during grasping in early euprimates, but lost this function in large-bodied lemurids. The present study tests the hypothesis that a large peroneal process is related to powerful grasping ability in primates displaying the more primitive I-V grasp complex. We use EMG to evaluate the recruitment of peroneus longus, other crural muscles, and adductor hallucis in static and locomotor grasping activities of the slow loris (Nycticebus coucang). Results show that peroneus longus is active during grasping behaviors that require the subject to actively resist inversion of the foot, and likely contributes to a hallucal grasp in these activities. Peroneus longus activity level does not differ between grasping and power grasping activities, nor does it differ between grasping and non-grasping locomotor modes. Conversely, the digital flexors and hallucal adductor are recruited at higher levels during power grasping and grasping locomotor modes. Consequently, we reject the hypothesis that an enlarged peroneal process represents an adaptation specifically to enhance the power of the I-V grasp, but accept that the muscle likely plays a role in adducting the hallux during grasping behaviors that require stabilization of the ankle, and suggest that further work is necessary to determine if this role is sufficient to drive selection for a large peroneal process.  相似文献   

8.
The aim of this study was to characterize the electromyographic (EMG) profile of tibialis posterior during barefoot walking in order to establish a reference database for neutral foot posture. Fifteen participants had their foot posture screened using the six-item Foot Posture Index. Bipolar intramuscular electrodes were inserted into tibialis posterior and peroneus longus utilizing ultrasound guidance. Surface electrodes were placed over medial gastrocnemius, peroneus brevis and tibialis anterior. EMG and footswitch gait characteristics were recorded whilst participants completed 10 barefoot walking trials. Individual and grand ensemble averages were used to characterize the intensity profiles for each muscle. Results indicated that for most of the participants, tibialis posterior displayed two bursts of EMG activity, with the first burst during the initial contact phase and the second burst during midstance. However, there was significant variability between participants. The grand ensemble average for tibialis posterior was comparable to peroneus longus which displayed similar temporal and intensity characteristics. It is suggested that this may reflect a synergistic relationship between these muscles during stance phase, although this was not consistent for all participants. Further research is required to determine if this relationship is altered in abnormal foot posture and whether it is clinically important. In conclusion, the EMG profile of tibialis posterior during the gait cycle appeared to be highly variable among participants. However, the authors believe that EMG findings from the participants with neutral foot posture in this study may be used for comparison to EMG patterns in people with abnormal foot posture and individuals affected by musculoskeletal disease.  相似文献   

9.
The aims of this study were: (a) to examine the effect of falling height on the kinematics of the tibiotalar, talonavicular and calcaneocuboid joints and (b) to study the influence of falling height on the muscle activity of the leg during landings. Six female gymnasts (height: 1.63±0.04 m, weight: 58.21±3.46 kg) participated in this study. All six gymnasts carried out barefoot landings, falling from 1.0, 1.5 and 2.0 m height onto a mat. Three genlocked digital high speed video cameras (250 Hz) captured the motion of the left shank and foot. Surface electromyography (EMG) was used to measure muscle activity (1000 Hz) from five muscles (gastrocnemius medialis, tibialis anterior, peroneus longus, vastus lateralis and hamstrings) of the left leg. The kinematics of the tibiotalar, talonavicular and calcaneocuboid joints were studied. The lower-leg and the foot were modelled by means of a multi-body system, comprising seven rigid bodies. The falling height does not show any influence on the kinematics neither of the tibiotalar nor of the talonavicular joints during landing. The eversion at the calcaneocuboid joint increases with increasing falling height. When augmenting falling height, the myoelectric activity of the muscles of the lower limb increases as well during the pre-activation phase as during the landing itself. The muscles of the lower extremities are capable of stabilizing the tibiotalar and the talonavicular joints actively, restricting their maximal motion by means of a higher activation before and after touchdown. Maximal eversion at the calcaneocuboid joint increases about 52% when landing from 2.0 m.  相似文献   

10.
Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the ‘size principle’, governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.  相似文献   

11.
The purpose of this study was to determine the reliability of investigating electromyography (EMG) of selected leg muscles during walking. Tibialis posterior and peroneus longus EMG activity were recorded via intramuscular electrodes. Tibialis anterior and medial gastrocnemius EMG activity were recorded with surface electrodes. Twenty-eight young adults attended two test-sessions approximately 15 days apart. Relative and absolute measures of reliability were calculated for EMG timing and amplitude parameters during specific phases of the gait cycle. Maximum contractions and sub-maximal contractions were obtained via maximum isometric voluntary contractions and a very fast walking speed, respectively. Time of peak EMG amplitude for all muscles displayed relatively narrow limits of random error. However, reliability of peak and root mean square amplitude parameters for tibialis posterior and peroneus longus displayed unacceptably wide limits of random error, regardless of the normalisation reference technique. Whilst some amplitude parameters for tibialis anterior and medial gastrocnemius displayed good to excellent relative reliability, the corresponding values for absolute error were generally large.Timing and amplitude EMG parameters for all muscles displayed low to moderate coefficient of variation within each test session (range: 7–25%). Overall, between-participant variability was minimised with sub-maximal normalisation values. These results demonstrate that re-application of electrodes results in large random error between sessions, particularly with tibialis posterior and peroneus longus. Researchers planning studies of these muscles with a repeated-test design (e.g. to evaluate the effect of an intervention) must consider whether this level of error is acceptable.  相似文献   

12.
The purpose of this study was to compare the effects of a standard flexible shoe and a stability running shoe on lower limb muscle activity during walking. Twenty-eight young asymptomatic adults with flat-arched feet were recruited. While walking, electromyographic (EMG) activity was recorded from tibialis posterior and peroneus longus via intramuscular electrodes; and from tibialis anterior and medial gastrocnemius via surface electrodes. Three experimental conditions were assessed: (i) barefoot, (ii) a standard flexible shoe, (iii) a stability running shoe. Results showed significant differences for the peak amplitude and the time of peak amplitude for tibialis anterior, peroneus longus and medial gastrocnemius when comparing the three experimental conditions (p < 0.05). Significant differences were detected primarily between the barefoot and shoe conditions and with relatively small effect sizes for peroneus longus, tibialis anterior and medial gastrocnemius. Few significant differences were found between the two shoe styles. We discuss how these changes are most likely associated with the shoe upper bracing the foot, the shape of the shoe outer-sole and weight of the shoes. Further research is needed to investigate differences between these shoe styles when participants walk for longer distances (i.e. over 1000 m) and following fatigue.  相似文献   

13.
Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM) muscle’s motor units using high-density surface electromyography (EMGs) at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm) were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF) were randomly requested. Using a two-dimensional grid (four columns, six electrodes) located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001).The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001). The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001). The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20–60% MVBF).  相似文献   

14.
This study compared patterns of leg muscle recruitment and coactivation, and the relationship between muscle recruitment, coactivation and cadence, in novice and highly trained cyclists. Electromyographic (EMG) activity of tibialis anterior (TA), tibialis posterior (TP), peroneus longus (PL), gastrocnemius lateralis (GL) and soleus (SOL) was recorded using intramuscular fine-wire electrodes. Four experimental conditions of varying cadence were investigated. Differences were evident between novice and highly trained cyclists in the recruitment of all muscles. Novice cyclists were characterized by greater individual variance, greater population variance, more extensive and more variable muscle coactivation, and greater EMG amplitude in periods between primary EMG bursts. Peak EMG amplitude increased linearly with cadence and was not different at individual preferred cadence in either novice or highly trained cyclists. However, EMG amplitude in periods between primary EMG bursts, as well as the duration of primary EMG bursts, increased with increasing cadence in novice cyclists but were not influenced by cadence in highly trained cyclists. Our findings suggest that muscle recruitment is highly skilled in highly trained cyclists and less refined in novice cyclists. More skilled muscle recruitment in highly trained cyclists is likely a result of neuromuscular adaptations due to repeated performance of the cycling movement in training and competition.  相似文献   

15.
Functional performance tests (FPTs) that consist of movements, such as hopping, landing, and cutting, provide useful measurements. Although some tests have been established for kinematic studies of the knee joint, very few tests have been established for the ankle joint. To use the FPT as a test battery for patients with an ankle sprain, it is necessary to document typical patterns of muscle activation and range of motion (ROM) of the ankle joint during FPTs. Therefore, the purpose of this study was to investigate the pattern of the ROM of the ankle inversion/eversion and the muscle activity of the peroneus longus muscle (PL) and the tibial anterior muscle (TA) in normal subjects during the side-hop test. To emphasize the characteristics of ROM and electromyography (EMG) at each phase, the side-hop tests were divided into 4 phases: lateral-hop contact phase (LC), lateral-hop flight phase (LF), medial hop contact phase (MC), and medial hop flight phase (MF), and the ROM of ankle inversion/eversion, a peak angle of ankle inversion, and Integral EMG (IEMG) of PL and TA compared among 4 phases. Fifteen male subjects with no symptoms of ankle joint problems participated in this research. The ROM of ankle inversion/eversion during the side-hop test was 27 ± 3.8° (mean ± SD), and there was a significant difference in the ROM of ankle inversion/eversion among 4 phases (p < 0.05). The phase in which the widest ROM was presented was the MF. A peak angle of the ankle inversion at MC was significantly greater than at LC and MF (p <0.05). A peak angle of the ankle inversion at LF was significantly greater than at LC and MF. The PL remained contracting with 50-160% of maximal voluntary contraction (MVC). The IEMGs of PL in both the contact phases were significantly greater than in both the flight phases (p < 0.05). In addition, the PL activity at LC was significantly greater than at MC. The TA remained contracting at 50-80% of MVC through the side-hop test. The IEMG of TA at both the contact phases was significantly greater than at 2 flight phases. However, there was no significant difference between LC and MF. Results of this study could be useful as basic data when evaluating the validity of the side-hop test for patients with ankle sprain.  相似文献   

16.
Muscle fiber conduction velocity (MFCV) estimation from surface signals is widely used to study muscle function, e.g., in neuromuscular disease and in fatigue studies. However, most analysis methods do not yield information about the velocity distribution of the various motor unit action potentials. We have developed a new method-the interpeak latency method (IPL)-to calculate both the mean MFCV and the spread of conduction velocities in vivo, from bipolar surface electromyogram (sEMG) during isometric contractions. sEMG was analyzed in the biceps brachii muscle in 15 young male volunteers. The motor unit action potential peaks are automatically detected with a computer program. Associated peaks are used to calculate a mean MFCV and the SD. The SD is taken as a measure of the MFCV spread. The main finding is that the IPL method can derive a measure of MFCV spread at different contraction levels. In conclusion, the IPL method provides accurate values for the MFCV and additionally gives information about the scatter of conduction velocities.  相似文献   

17.
Muscle fiber conduction velocity (MFCV) provides indications on motor unit recruitment strategies due to the relation between conduction velocity and fiber diameter. The aim of this study was to investigate MFCV of thigh muscles during cycling at varying power outputs, pedal rates, and external forces. Twelve healthy male participants aged between 19 and 30 yr cycled on an electronically braked ergometer at 45, 60, 90, and 120 rpm. For each pedal rate, subjects performed two exercise intensities, one at an external power output corresponding to the previously determined lactate threshold (100% LT) and the other at half of this power output (50% LT). Surface electromyogram signals were detected during cycling from vastus lateralis and medialis muscles with linear adhesive arrays of eight electrodes. In both muscles, MFCV was higher at 100% LT compared with 50% LT for all average pedal rates except 120 rpm (mean +/- SE, 4.98 +/- 0.19 vs. 4.49 +/- 0.18 m/s; P < 0.001). In all conditions, MFVC increased with increasing instantaneous knee angular speed (from 4.14 +/- 0.16 to 5.08 +/- 0.13 m/s in the range of instantaneous angular speeds investigated; P < 0.001). When MFCV was compared at the same external force production (i.e., 90 rpm/100% LT vs. 45 rpm/50% LT, and 120 rpm/100% LT vs. 60 rpm/50% LT), MFCV was higher at the faster pedal rate (5.02 +/- 0.17 vs. 4.64 +/- 0.12 m/s, and 4.92 +/- 0.19 vs. 4.49 +/- 0.11 m/s, respectively; P < 0.05) due to the increase in inertial power required to accelerate the limbs. It was concluded that, during repetitive dynamic movements, MFCV increases with the external force developed, instantaneous knee angular speed, and average pedal rate, indicating progressive recruitment of large, high conduction velocity motor units with increasing muscle force.  相似文献   

18.
A clonal analysis of wild-type and aristapedia eye-antenna discs has shown that both discs are subdivided into anterior and posterior compartments. However, the spatial order of the anterior and posterior compartments is reversed in the adult, so that the posterior compartment is at the extreme anterior tip of the fly. The mutation aristapedia transforms both the anterior and the posterior antennal compartments into anterior and posterior leg compartments, respectively. The anteroposterior segregation is established in the eye-antenna disc during the larval period. This contrasts with other discs (leg, wing, proboscis) where the same segregation is established around blastoderm. The engrailed gene is involved in the segregation; some of the mutations in engrailed transform the posterior antennal compartment into a partial mirror image of the anterior one.  相似文献   

19.
To elucidate compositional changes of the tendon of the peroneus longus muscle with aging, the authors investigated age-related changes of elements in the insertion of tendons of the peroneus longus muscle (peroneus longus tendons) in Thai, Japanese, and monkeys and the relationships among element contents by direct chemical analysis. After ordinary dissections at Chiang Mai University and Nara Medical University were finished, the peroneus longus tendons were resected from the subjects. The peroneus longus tendons were also resected from rhesus and Japanese monkeys bred in Primate Research Institute, Kyoto University. The wraparound regions of the insertion tendons of the peroneus longus muscle in contact with the cuboid bone were used as the peroneus longus tendon. After ashing with nitric acid and perchloric acid, element contents were determined with an inductively coupled plasma-atomic emission spectrometer. It was found that there were no significant correlations between age and the seven elements, such as Ca, P, S, Mg, Zn, Fe, and Na, in the peroneus longus tendons of Thai and Japanese. The Ca content higher than 10 mg/g was contained in seven cases out of 34 peroneus longus tendons of Thai (incidence?=?20.6%) and in one case out of 22 peroneus longus tendons of Japanese (incidence?=?4.5%), respectively. All of the peroneus longus tendons with the Ca content higher than 10 mg/g were found in Thai and Japanese men. In the peroneus longus tendons of monkeys, the Ca and P content increased suddenly at 2 years of age and reached to about 40 mg/g at 5 years of age. Thereafter, the Ca and P content did not increase in the peroneus longus tendons of monkeys at old age. Regarding the relationships among element contents, significant direct correlations were found among the contents of Ca, P, Mg, Zn, and Na in Thai and monkeys, whereas significant inverse correlations were found between S and element contents, such as Ca, P, Mg, Zn, and Na, in Thai and monkeys.  相似文献   

20.
B Boesiger 《Acta anatomica》1975,93(1):100-114
Following a previous comparison of the peroneus longus muscle of the quail and the starling, the present paper deals with a comparative study of this muscle in two birds of the order Gallinaceae, the quail and the bantam, bearing in mind certain data found in the starling. The study deals with the types of muscle fibres, their frequency in various parts of the muscle, their lipid content and their innervation. In the quail, two types of fibres are found, with a low and high lipid content respectively, while the bantam and starling have also a third, intermediate type. These intermediate fibres have a characteristically intermediate lipid content, peripherally situated nuclei and areas with a myofibrillar structure. The proportion of the two of three types of fibres varies with the species and in the distal and proximal parts of the muscle. The innervation of the peroneus longus muscle is different in the three species. In the quail, the two types of fibres have only one arboriform motor end-plate per fibre. In the bantam, the two types of homologous fibres also have only one motor end-plate, but with fewer arborifications. The intermediate fibre type, on the other hand, is innervated by several small nerve endings for each muscle fibre. This type of multiple innervation is also found in the starling. The peroneus longus muscle is thus functionally different in the two birds of the order Gallinaceae, whereas the rapid and slow system of innervation is found in the bantam and the starling. In the quail and the bantam, there is a strong positive correlation between the diameter of the muscle fibre and the longitudinal extent of the motor end-plate. This correlation is not marked in the starling. The characteristics of the innervation revealed by the cholinesterase activity concentrated in the synaptic grooves were confirmed by a direct study of the nerve fibres, using the Bielschowsky-Gros method. In the quail only 'en plaque' endings are found, while in the bantam and the starling both 'en plaque' and 'en grappe' endings are present. A parallel is drawn between the differences in function of the peroneus longus muscle and the characteristic features of its histology and innervation in the three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号