首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recognition and attachment of virus to its host cell surface is a critical step for viral infection. Recent research revealed that β-integrin was involved in White spot syndrome virus (WSSV) infection. In this study, the interaction of β-integrin with structure proteins of WSSV and motifs involved in WSSV infection was examined. The results showed that envelope proteins VP26, VP31, VP37, VP90 and nucleocapsid protein VP136 interacted with LvInt. RGD-, YGL- and LDV-related peptide functioned as motifs of WSSV proteins binding with β-integrin. The β-integrin ligand of RGDT had better blocking effect compared with that of YGL- and LDV-related peptides. In vivo assay indicated that RGD-, LDV- and YGL-related peptides could partially block WSSV infection. These data collectively indicate that multiple proteins were involved in recognition of β-integrin. Identification of proteins in WSSV that are associated with β-integrin will assist development of new agents for effective control of the white spot syndrome.  相似文献   

2.
Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses, cell proliferation, and immune regulation. However, the function of PHBs in crustacean immunity remains largely unknown. In the present study, we identified a PHB in Procambarus clarkii red swamp crayfish, which was designated PcPHB1. PcPHB1 was widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge at the mRNA level and the protein level. These observations prompted us to investigate the role of PcPHB1 in the crayfish antiviral response. Recombinant PcPHB1 (rPcPHB1) significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. The quantity of WSSV in PcPHB1 knockdown crayfish was increased compared with that in the controls. The effects of RNA silencing were rescued by rPcPHB1 reinjection. We further confirmed the interaction of PcPHB1 with the WSSV envelope proteins VP28, VP26, and VP24 using pulldown and far-Western overlay assays. Finally, we observed that the colloidal gold-labeled PcPHB1 was located on the outer surface of the WSSV, which suggests that PcPHB1 specifically binds to the envelope proteins of WSSV. VP28, VP26, and VP24 are structural envelope proteins and are essential for attachment and entry into crayfish cells. Therefore, PcPHB1 exerts its anti-WSSV effect by binding to VP28, VP26, and VP24, preventing viral infection. This study is the first report on the antiviral function of PHB in the innate immune system of crustaceans.  相似文献   

3.
White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. VP28 is one of the most important envelope proteins of WSSV. In this study, a recombinant antibody library, as single-chain fragment variable (scFv) format, displayed on phage was constructed using mRNA from spleen cells of mice immunized with full-length VP28 expressed in Escherichia coli. After several rounds of panning, six scFv antibodies specifically binding to the epitopes in the N-terminal, middle, and C-terminal regions of VP28, respectively, were isolated from the library. Using these scFv antibodies as tools, the epitopes in VP28 were located on the envelope of the virion by immuno-electron microscopy. Neutralization assay with these antibodies in vitro suggested that these epitopes may not be the attachment site of WSSV to host cell receptor. This study provides a new way to investigate the structure and function of the envelope proteins of WSSV.  相似文献   

4.
C-type lectins (CTLs) acting as pattern recognition receptors play essential roles in shrimp innate immune responses. Using WSSV envelope proteins (VP26, VP28, and VP281) to screen a phage display library of Marsupenaeus japonicus, three lectins (termed as MjLecA, MjLecB, and MjLecC) were found to interact with WSSV. Sequence analysis revealed that these MjLecs shared low similarities with each other. Phylogenetic analysis indicated MjLecA and MjLecB are likely to belong to the same lectin sub-family, while MjLecC belongs to another sub-family. These MjLecs showed broad, unique carbohydrate binding spectra. Also, the three MjLecs could interact with several envelope proteins of WSSV and could recognize a wide range of microorganisms. Moreover, binding of MjLecA or MjLecB to WSSV reduced the viral infection rate in vitro. These results suggest that various kinds of CTLs with structural and functional diversities may constitute a recognizing network against invading pathogens such as bacteria and virus, and play essential roles in the defence system of shrimp.  相似文献   

5.
White spot syndrome virus (WSSV) is the causative agent of a severe disease of cultivated shrimp. Using purified WSSV virions, VP53A encoded by open reading frame wssv067 was identified as a structural protein by SDS-PAGE and proteomics. Immunoelectron microscopy with a gold-labeled secondary antibody revealed that VP53A was distributed on the viral envelope. In order to further explore the link between WSSV067 and host proteins, we performed a yeast 2-hybrid screening of a Penaeus monodon cDNA library, using WSSV067C as bait. One of the molecules that specifically interacted with WSSV067C was the P. monodon chitin-binding protein (PmCBP). An in vitro binding assay showed that c-myc-WSSV067C was capable of co-precipitating HA-PmCBP-C. Furthermore, PmCBP was expressed in almost all organs but appeared to be up-regulated at the late stage of WSSV infection.  相似文献   

6.
7.
A cDNA library was constructed from white spot syndrome virus (WSSV)-infected penaeid shrimp tissue. cDNA clones with WSSV inserts were isolated and sequenced. By comparison with DNA sequences in GenBank, cDNA clones containing sequence identical to those of the WSSV envelope protein VP28 and nucleoprotein VP15 were identified. Poly(A) sites in the mRNAs of VP28 and VP15 were identified. Genes encoding the major viral structural proteins VP28, VP26, VP24, VP19 and VP15 of 5 WSSV isolates collected from different shrimp species and/or geographical areas were sequenced and compared with those of 4 other WSSV isolate sequences in GenBank. For each of the viral structural protein genes compared, the nucleotide sequences were 100 to 99% identical among the 9 isolates. Gene probes or PCR primers based on the gene sequences of the WSSV structural proteins can be used for diagnoses and/or detection of WSSV infection.  相似文献   

8.
White spot syndrome virus (WSSV) can cause the most serious viral disease of shrimp and has a wide host range among crustaceans. Although researches show a lot about its genome and structure, information concerning the mechanism of how WSSV infects' cells is lacking. In this study, some experiments were applied to confirm the biological meaning of the protein–protein interaction between WSSV envelope protein, VP53A, and Penaeus monodon chitin-binding protein (PmCBP). Immunofluorescent study indicated that PmCBP is located on the cell surface of host cells. PmCBP amounts of about 34 kDa can be detected in both P. monodon and Litopenaeus vannamei tissues by Western blotting. In the in vivo neutralization experiment, both rVP53A and rPmCBP that were produced by Esherichia coli can promote resp. a 40% and 20% survival rate of the shrimp which were challenged by WSSV. Furthermore, a yeast-two-hybrid result revealed that PmCBP could interact with at least 11 WSSV envelope proteins. Those findings suggest that PmCBP may be involved in WSSV infection.  相似文献   

9.
10.
Xie X  Xu L  Yang F 《Journal of virology》2006,80(21):10615-10623
White spot syndrome virus (WSSV) virions were purified from the tissues of infected Procambarus clarkii (crayfish) isolates. Pure WSSV preparations were subjected to Triton X-100 treatment to separate into the envelope and nucleocapsid fractions, which were subsequently separated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The major envelope and nucleocapsid proteins were identified by either matrix-assisted laser desorption ionization-time of flight mass spectrometry or defined antibody. A total of 30 structural proteins of WSSV were identified in this study; 22 of these were detected in the envelope fraction, 7 in the nucleocapsid fraction, and 1 in both the envelope and the nucleocapsid fractions. With the aid of specific antibodies, the localizations of eight proteins were further studied. The analysis of posttranslational modifications revealed that none of the WSSV structural proteins was glycosylated and that VP28 and VP19 were threonine phosphorylated. In addition, far-Western and coimmunoprecipitation experiments showed that VP28 interacted with both VP26 and VP24. In summary, the data obtained in this study should provide an important reference for future molecular studies of WSSV morphogenesis.  相似文献   

11.
12.
White spot syndrome (WSS) is one of the most common and most disastrous diseases of shrimp worldwide. It causes up to 100% mortality within 3 to 4 days in commercial shrimp farms, resulting in large economic losses to the shrimp farming industry. VP28 envelope protein of WSSV is reported to play a key role in the systemic infection in shrimps. Considering the most sombre issue of viral disease in cultivated shrimp, the present study was undertaken to substantiate the inhibition potential of Avicennia marinaderived phytochemicals against the WSSV envelope protein VP28. Seven A. marina-derived phytochemicals namely stigmasterol, triterpenoid, betulin, lupeol, avicenol-A, betulinic acid and quercetin were docked against the WSSV protein VP28 by using Argus lab molecular docking software. The chemical structures of the phytochemicals were retrieved from Pubchem database and generated from SMILES notation. Similarly the protein structure of the envelope protein was obtained from protein data bank (PDB-ID: 2ED6). Binding sites were predicted by using ligand explorer software. Among the phytochemicals screened, stigmasterol, lupeol and betulin showed the best binding exhibiting the potential to block VP28 envelope protein of WSSV, which could possibly inhibit the attachment of WSSV to the host species. Further experimental studies will provide a clear understanding on the mode of action of these phytochemicals individually or synergistically against WSSV envelope protein and can be used as an inhibitory drug to reduce white spot related severe complications in crustaceans.  相似文献   

13.
VP37 of white spot syndrome virus interact with shrimp cells   总被引:2,自引:0,他引:2  
Aims:  To investigate VP37 [WSV 254 of White spot syndrome virus (WSSV) genome] interacting with shrimp cells and protecting shrimp against WSSV infection.
Methods and Results:  VP37 was expressed in Escherichia coli and was confirmed by Western blotting. Virus overlay protein binding assay (VOPBA) technique was used to analyse the rVP37 interaction with shrimp and the results showed that rVP37 interacted with shrimp cell membrane. Binding assay of recombinant VP37 with shrimp cell membrane by ELISA confirmed that purified rVP37 had a high-binding activity with shrimp cell membrane. Binding of rVP37 to shrimp cell membrane was a dose-dependent. Competition ELISA result showed that the envelope protein VP37 could compete with WSSV to bind to shrimp cells. In vivo inhibition experiment showed that rVP37 provided 40% protection. Inhibition of virus infection by rVP37 in primary cell culture revealed that rVP37 counterparted virus infection within the experiment period.
Conclusions:  VP37 has been successfully expressed in E . coli . VP37 interacted with shrimp cells.
Significance and Impact of the Study:  The results suggest that rVP37 has a potential application in prevention of virus infection.  相似文献   

14.
Nanobodies (or variable domain of the heavy chain of the heavy-chain antibodies, VHHs) are single-domain antigen-binding fragments derived from camelid heavy chain antibodies. Their comparatively small size, monomeric behavior, high stability, high solubility, and ability to bind epitopes inaccessible to conventional antibodies make them especially suitable for many therapeutic and biotechnological applications. In this paper, for the first time, we created the immunized Camelus Bactrianus VHH yeast two-hybrid (Y2H) library according to the Clontech Mate & Plate library construction system. The transformation efficiency and titer of the VHH Y2H library were 7.26×106 cfu/3 µg and 2×109 cfu/ml, which met the demand for Y2H library screening. Using as an example the porcine circovirus type 2 (PCV2) Cap protein as bait, we screened 21 positive Cap-specific VHH sequences. Among these sequences, 7 of 9 randomly selected clones were strongly positive as indicated by enzyme-linked immunosorbent assay, either using PCV2 viral lysis or purified Cap protein as coated antigen. Additionally, the immunocytochemistry results further indicated that the screened VHHs could specifically detected PCV2 in the infected cells. All this suggests the feasibility of in vivo VHH throughput screening based on Y2H strategy.  相似文献   

15.
White spot syndrome caused by white spot syndrome virus (WSSV) is one of the most threatening diseases of shrimp culture industry. Previous studies have successfully demonstrated the use of DNA- and RNA-based vaccines to protect WSSV infection in shrimp. In the present study, we have explored the protective efficacy of antisense constructs directed against WSSV proteins, VP24, and VP28, thymidylate synthase (TS), and ribonucleotide reductase-2 (RR2) under the control of endogenous shrimp histone-3 (H3) or penaedin (Pn) promoter. Several antisense constructs were generated by inserting VP24 (pH3–VP24, pPn–VP24), VP28 (pH3–VP28, pPn–VP28), TS (pH3–TS, pPn–TS), and RR2 (pH3–RR2) in antisense orientation. These constructs were tested for their protective potential in WSSV infected cell cultures, and their effect on reduction of the viral load was assessed. A robust reduction in WSSV copy number was observed upon transfection of antisense constructs in hemocyte cultures derived from Penaeus monodon and Scylla serrata. When tested in vivo, antisense constructs offered a strong protection in WSSV challenged P. monodon. Constructs expressing antisense VP24 and VP28 provided the best protection (up to 90 % survivability) with a corresponding decrease in the viral load. Our work demonstrates that shrimp treated with antisense constructs present an efficient control strategy for combating WSSV infection in shrimp aquaculture.  相似文献   

16.
White spot disease is an important viral disease caused by white spot syndrome virus (WSSV) and is responsible for huge economic losses in the shrimp culture industry worldwide. The VP28 gene encoding the most dominant envelope protein of WSSV was used to construct a DNA vaccine. The VP28 gene was cloned in the eukaryotic expression vector pcDNA3.1 and the construct was named as pVP28. The protective efficiency of pVP28 against WSSV was evaluated in Penaeus monodon by intramuscular challenge. In vitro expression of VP28 gene was confirmed in sea bass kidney cell line (SISK) by fluorescence microscopy before administering to shrimp. The distribution of injected pVP28 in different tissues of shrimp was studied and the results revealed the presence of pVP28 in gill, head soft tissue, abdominal muscle, hemolymph, pleopods, hepatopancreas and gut. RT-PCR and fluorescence microscopy analyses showed the expression of pVP28 in all these tissues examined. The results of vaccination trials showed a significantly higher survival rate in shrimp vaccinated with pVP28 (56.6-90%) when compared to control groups (100% mortality). The immunological parameters analyzed in the vaccinated and control groups revealed that the vaccinated shrimp showed significantly high level of prophenoloxidase and superoxide dismutase (SOD) when compared to the control groups. The high levels of prophenoloxidase and superoxide dismutase (SOD) might be responsible for developing resistance against WSSV in DNA vaccinated shrimp.  相似文献   

17.
18.
Previous studies identify VP28 envelope protein of white spot syndrome virus (WSSV) as its main antigenic protein. Although implicated in viral infectivity, its functional role remains unclear. In the current study, we described the production of polyclonal antibodies to recombinant truncated VP28 proteins including deleted N-terminal (rVP28ΔN), C-terminal (rVP28ΔC) and middle (rVP28ΔM). In antigenicity assays, antibodies developed from VP28 truncations lacking the N-terminal or middle regions showed significantly lowered neutralization of WSSV in crayfish, Procambarus clarkii. Further immunogenicity analysis showed reduced relative percent survival (RPS) in crayfish vaccinating with these truncations before challenge with WSSV. These results indicated that N-terminal (residues 1–27) and middle region (residues 35–95) were essential to maintain the neutralizing linear epitopes of VP28 and responsible in eliciting immune response. Thus, it is most likely that these regions are exposed on VP28, and will be useful for rational design of effective vaccines targeting VP28 of WSSV.  相似文献   

19.
The protein components of the white spot syndrome virus (WSSV) virion have been well established by proteomic methods, and at least 39 structural proteins are currently known. However, several details of the virus structure and assembly remain controversial, including the role of one of the major structural proteins, VP26. In this study, Triton X-100 was used in combination with various concentrations of NaCl to separate intact WSSV virions into distinct fractions such that each fraction contained envelope and tegument proteins, tegument and nucleocapsid proteins, or nucleocapsid proteins only. From the protein profiles and Western blotting results, VP26, VP36A, VP39A, and VP95 were all identified as tegument proteins distinct from the envelope proteins (VP19, VP28, VP31, VP36B, VP38A, VP51B, VP53A) and nucleocapsid proteins (VP664, VP51C, VP60B, VP15). We also found that VP15 dissociated from the nucleocapsid at high salt concentrations, even though DNA was still present. These results were confirmed by CsCl isopycnic centrifugation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry, by a trypsin sensitivity assay, and by an immunogold assay. Finally, we propose an assembly process for the WSSV virion.  相似文献   

20.
Tang X  Wu J  Sivaraman J  Hew CL 《Journal of virology》2007,81(12):6709-6717
White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 A, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelope proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt beta-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core beta-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号