首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first branch of the lateral plantar nerve and heel pain   总被引:2,自引:0,他引:2  
The course and ramification pattern of the lateral plantar nerve was studied in serial sections from 4 fetal feet and in dissections from 34 adult feet with special reference to the so called first branch. This branch was found in all of the observed fetal and adult specimen. From its originating point the nerve runs immediately distally to the medial process of the calcaneal tuberosity in a lateral direction to the proximal part of the abductor digiti minimi muscle. During its course the FB gives two branches. One of them penetrates sometimes the insertion of the quadratus plantae muscle, whereas in adult feet it always sends fibres to the periosteum around the medial process of the calcaneal tuberosity and the long plantar ligament. The other innervates the flexor digitorum brevis muscle. The site of a possible entrapment is located between the abductor hallucis muscle and the medial head of the quadratus plantae muscle. There is strong indirect evidence that the nerve is of a mixed type consisting of sensory fibres for the calcaneal periosteum and the medial head of the quadratus plantae muscle. There is strong indirect evidence that the nerve is of a mixed type consisting of sensory fibres for the calcaneal periosteum and the long plantar ligament as well as motor fibres for the quadratus plantae, flexor digitorum brevis and abductor digiti minimi muscles, which may explain the characteristic pain complaints of the heel pain syndrome. The occurrence of a stiff fascia perforated by the nerve branch or a bursa around the insertion of the plantar aponeurosis as has been described by several authors and which was put forward as a possible aetiological factor could not be confirmed in our material.  相似文献   

2.
Estimation of instantaneous moment arms of lower-leg muscles   总被引:2,自引:0,他引:2  
Muscle moment arms at the human knee and ankle were estimated from muscle length changes measured as a function of joint flexion angle in cadaver specimens. Nearly all lower-leg muscles were studied: extensor digitorum longus, extensor hallucis longus, flexor digitorum longus, flexor hallucis longus, gastrocnemius lateralis, gastrocnemius medialis, peroneus brevis, peroneus longus, peroneus tertius, plantaris, soleus, tibialis anterior, and tibialis posterior. Noise in measured muscle length was filtered by means of quintic splines. Moment arms of the mm. gastrocnemii appear to be much more dependent on joint flexion angles than was generally assumed by other investigators. Some consequences for earlier analyses are mentioned.  相似文献   

3.
The purpose of this study was to investigate the relationships between the ankle joint angle and maximum isometric force of the toe flexor muscles. Toe flexor strength and electromyography activity of the foot muscles were measured in 12 healthy men at 6 different ankle joint angles with the knee joint at 90 deg in the sitting position. To measure the maximum isometric force of the toe flexor muscles, subjects exerted maximum force on a toe grip dynamometer while the activity levels of the intrinsic and extrinsic plantar muscles were measured. The relation between ankle joint angle and maximum isometric force of the toe flexor muscles was determined, and the isometric force exhibited a peak when the ankle joint was at 70–90 deg on average. From this optimal neutral position, the isometric force gradually decreased and reached its nadir in the plantar flexion position (i.e., 120 deg). The EMG activity of the abductor hallucis (intrinsic plantar muscle) and peroneus longus (extrinsic plantar muscle) did not differ at any ankle joint angles. The results of this study suggest that the force generation of toe flexor muscles is regulated at the ankle joint and that changes in the length-tension relations of the extrinsic plantar muscle could be a reason for the force-generating capacity at the metatarsophalangeal joint when the ankle joint angle is changed.  相似文献   

4.
5.
One of the purposes of footwear is to assist locomotion, but some footwear types seem to restrict natural foot motion, which may affect the contribution of ankle plantar flexor muscles to propulsion. This study examined the effects of different footwear conditions on the activity of ankle plantar flexors during walking. Ten healthy habitually shod individuals walked overground in shoes, barefoot and in flip-flops while fine-wire electromyography (EMG) activity was recorded from flexor hallucis longus (FHL), soleus (SOL), and medial and lateral gastrocnemius (MG and LG) muscles. EMG signals were peak-normalised and analysed in the stance phase using Statistical Parametric Mapping (SPM). We found highly individual EMG patterns. Although walking with shoes required higher muscle activity for propulsion than walking barefoot or with flip-flops in most participants, this did not result in statistically significant differences in EMG amplitude between footwear conditions in any muscle (p > 0.05). Time to peak activity showed the lowest coefficient of variation in shod walking (3.5, 7.0, 8.0 and 3.4 for FHL, SOL, MG and LG, respectively). Future studies should clarify the sources and consequences of individual EMG responses to different footwear.  相似文献   

6.
The aim of this study was to characterize the electromyographic (EMG) profile of tibialis posterior during barefoot walking in order to establish a reference database for neutral foot posture. Fifteen participants had their foot posture screened using the six-item Foot Posture Index. Bipolar intramuscular electrodes were inserted into tibialis posterior and peroneus longus utilizing ultrasound guidance. Surface electrodes were placed over medial gastrocnemius, peroneus brevis and tibialis anterior. EMG and footswitch gait characteristics were recorded whilst participants completed 10 barefoot walking trials. Individual and grand ensemble averages were used to characterize the intensity profiles for each muscle. Results indicated that for most of the participants, tibialis posterior displayed two bursts of EMG activity, with the first burst during the initial contact phase and the second burst during midstance. However, there was significant variability between participants. The grand ensemble average for tibialis posterior was comparable to peroneus longus which displayed similar temporal and intensity characteristics. It is suggested that this may reflect a synergistic relationship between these muscles during stance phase, although this was not consistent for all participants. Further research is required to determine if this relationship is altered in abnormal foot posture and whether it is clinically important. In conclusion, the EMG profile of tibialis posterior during the gait cycle appeared to be highly variable among participants. However, the authors believe that EMG findings from the participants with neutral foot posture in this study may be used for comparison to EMG patterns in people with abnormal foot posture and individuals affected by musculoskeletal disease.  相似文献   

7.
The purpose of this study was to determine the reliability of investigating electromyography (EMG) of selected leg muscles during walking. Tibialis posterior and peroneus longus EMG activity were recorded via intramuscular electrodes. Tibialis anterior and medial gastrocnemius EMG activity were recorded with surface electrodes. Twenty-eight young adults attended two test-sessions approximately 15 days apart. Relative and absolute measures of reliability were calculated for EMG timing and amplitude parameters during specific phases of the gait cycle. Maximum contractions and sub-maximal contractions were obtained via maximum isometric voluntary contractions and a very fast walking speed, respectively. Time of peak EMG amplitude for all muscles displayed relatively narrow limits of random error. However, reliability of peak and root mean square amplitude parameters for tibialis posterior and peroneus longus displayed unacceptably wide limits of random error, regardless of the normalisation reference technique. Whilst some amplitude parameters for tibialis anterior and medial gastrocnemius displayed good to excellent relative reliability, the corresponding values for absolute error were generally large.Timing and amplitude EMG parameters for all muscles displayed low to moderate coefficient of variation within each test session (range: 7–25%). Overall, between-participant variability was minimised with sub-maximal normalisation values. These results demonstrate that re-application of electrodes results in large random error between sessions, particularly with tibialis posterior and peroneus longus. Researchers planning studies of these muscles with a repeated-test design (e.g. to evaluate the effect of an intervention) must consider whether this level of error is acceptable.  相似文献   

8.
Blood flow and glycogen use in hypertrophied rat muscles during exercise   总被引:1,自引:0,他引:1  
Previous findings suggest that skeletal muscle that has enlarged as a result of removal of synergistic muscles has a similar metabolic capacity and improved resistance to fatigue compared with normal muscle. The purpose of the present study was to follow blood flow and glycogen loss patterns in hypertrophied rat plantaris plantaris and soleus muscles during treadmill exercise to provide information on the adequacy of perfusion of the muscles during in vivo exercise. Thirty days following surgical removal of gastrocnemius muscle, blood flows (determined with radiolabeled microspheres) and glycogen concentrations were determined in all of the ankle extensor muscles of experimental and sham-operated control rats during preexercise and after 5-6 min of treadmill exercise at 15 m/min. There were no differences (P greater than 0.05) in blood flows per unit mass or glycogen concentrations between control and hypertrophied plantaris or soleus muscles at either time, although both muscles were larger (P less than 0.05) in the experimental group (plantaris: 95%; soleus: 40%). None of the other secondary ankle extensor muscles (tibialis posterior, flexor digitorum longus or flexor hallicus longus) hypertrophied in response to removal of gastrocnemius. These results provide indirect evidence that O2 delivery in the enlarged muscles is not compromised during low-intensity treadmill exercise due to limited perfusion.  相似文献   

9.
Forearm compartment syndrome is a surgical emergency that usually requires release of the superficial muscle compartments. In some clinical situations it is imperative to also explore the deep muscle compartments. There are no anatomical guides for surgical exploration of the deep compartments that would minimize collateral damage to surrounding vessels, nerves, and muscles. Surgical injury in the setting of ischemia, especially vascular injury, compounds the tissue damage that has already occurred. The authors evaluated four surgical approaches (three volar and one dorsal) to the deep forearm by performing detailed anatomical dissections on 10 embalmed and plastinated cadavers. They used a scoring system to rate the approaches for their ability to visualize the deep space without causing iatrogenic injury to superficial muscles, arteries, and nerves. In the volar forearm, an ulnar approach to the deep space is simple, causes the least iatrogenic surgical injury, and provides access to the deep volar forearm structures. The plane of dissection is between the flexor carpi ulnaris and the flexor digitorum superficialis. Dividing one or two distal segmental branches of the ulnar artery to the distal flexor digitorum superficialis exposes the pronator quadratus. Lifting the ulnar neurovascular bundle with the flexor digitorum superficialis in the middle third of the forearm exposes the flexor digitorum profundus and the flexor pollicis longus. This approach to the deep space requires no sharp dissection. In the dorsal forearm, a midline approach between the extensor digitorum communis and the extensor carpi radialis brevis is simple and safe.  相似文献   

10.
Studying mechanics of the muscles spanning multiple joints provides insights into intersegmental dynamics and movement coordination. Multiarticular muscles are thought to function at "near-isometric" lengths to transfer mechanical energy between the adjacent body segments. Flexor hallucis longus (FHL) is a multiarticular flexor of the great toe; however, its potential isometric function has received little attention. We used a robotic loading apparatus to investigate FHL mechanics during simulated walking in cadaver feet, and hypothesized that physiological force transmission across the foot can occur with isometric FHL function. The extrinsic foot tendons, stripped of the muscle fibers, were connected to computer-controlled linear actuators. The FHL activity was controlled using force-feedback (FC) based upon electromyographic data from healthy subjects, and subsequently, isometric positional feedback (PC), maintaining the FHL myotendinous junction stationary during simulated walking. Tendon forces and excursions were recorded, as were the strains within the first metatarsal. Forces in the metatarsal and metatarsophalangeal joint were derived from these strains. The FHL tendon excursion under FC was 6.57+/-3.13mm. The forces generated in the FHL tendon, metatarsal and metatarsophalangeal joint with the FHL under isometric PC were not significantly different in pattern from FC. These observations provide evidence that physiological forces could be generated along the great toe with isometric FHL function. A length servo mechanism such as the stretch reflex could likely control the isometric FHL function during in vivo locomotion; this could have interesting implications regarding the conditions of impaired stretch reflex such as spastic paresis and peripheral neuropathies.  相似文献   

11.
The goal of the present study was to test the hypothesis that epimuscular myofascial force transmission occurs between deep flexor muscles of the rat and their antagonists: previously unstudied mechanical effects of length changes of deep flexors on the anterior crural muscles (i.e., extensor digitorum longus (EDL), as well as tibialis anterior and extensor hallucis longus muscle complex (TA + EHL) and peroneal (PER) muscles were assessed experimentally. These muscles or muscle groups were kept at constant length, whereas, distal length changes were imposed on deep flexor (DF) muscles before performing isometric contractions. Distal forces of all muscle-tendon complexes were measured simultaneously, in addition to EDL proximal force. Distal lengthening of DF caused substantial significant effects on its antagonistic muscles: (1) increase in proximal EDL total force (maximally 19.2%), (2) decrease in distal EDL total (maximally 8.4%) and passive (maximally 49%) forces, (3) variable proximo-distal total force differences indicating net proximally directed epimuscular myofascial loads acting on EDL at lower DF lengths and net distally directed loads at higher DF lengths, (4) decrease in TA + EHL total (maximally 50%) and passive (maximally 66.5%) forces and (5) decrease in PER total force (maximally 51.3%). It is concluded that substantial inter-antagonistic epimuscular myofascial force transmission occurs between deep flexor, anterior crural and peroneal muscles.In the light of our present results and recently reported evidence on inter-antagonistic interaction between anterior crural, peroneal and triceps surae muscles, we concluded that epimuscular myofascial force transmission is capable of causing major effects within the entire lower leg of the rat. Implications of such large scale myofascial force transmission are discussed and expected to be crucial to muscle function in healthy, as well as pathological conditions.  相似文献   

12.
This study examined the effect of computer keyboard keyswitch design on muscle activity patterns during finger tapping. In a repeated-measures laboratory experiment, six participants tapped with their index fingers on five isolated keyswitch designs with varying force–displacement characteristics that provided pairwise comparisons for the design factors of (1) activation force (0.31 N vs. 0.59 N; 0.55 N vs. 0.93 N), (2) key travel (2.5 mm vs. 3.5 mm), and (3) shape of the force–displacement curve as realized through buckling-spring vs. rubber-dome switch designs. A load cell underneath the keyswitch measured vertical fingertip forces, and intramuscular fine wire EMG electrodes measured muscle activity patterns of two intrinsic (first lumbricalis, first dorsal interossei) and three extrinsic (flexor digitorum superficialis, flexor digitorum profundus, and extensor digitorum communis) index finger muscles. The amplitude of muscle activity for the first dorsal interossei increased 25.9% with larger activation forces, but not for the extrinsic muscles. The amplitude of muscle activity for the first lumbricalis and the duration of muscle activities for the first dorsal interossei and both extrinsic flexor muscles decreased up to 40.4% with longer key travel. The amplitude of muscle activity in the first dorsal interossei increased 36.6% and the duration of muscle activity for all muscles, except flexor digitorum profundus, decreased up to 49.1% with the buckling-spring design relative to the rubber-dome design. These findings suggest that simply changing the force–displacement characteristics of a keyswitch changes the dynamic loading of the muscles, especially in the intrinsic muscles, during keyboard work.  相似文献   

13.
The purpose of this study was to determine whether there are alterations in the dihydropyridine and/or ryanodine receptors that might explain the excitation-contraction uncoupling associated with eccentric contraction-induced skeletal muscle injury. The left anterior crural muscles (i.e., tibialis anterior, extensor digitorum longus, and extensor hallucis longus) of mice were injured in vivo by 150 eccentric contractions. Peak isometric tetanic torque of the anterior crural muscles was reduced approximately 45% immediately and 3 days after the eccentric contractions. Partial restoration of peak isometric tetanic and subtetanic forces of injured extensor digitorum longus muscles by 10 mM caffeine indicated the presence of excitation-contraction uncoupling. Scatchard analysis of [3H]ryanodine binding indicated that the number of ryanodine receptor binding sites was not altered immediately postinjury but decreased 16% 3 days later. Dihydropyridine receptor binding sites increased approximately 20% immediately after and were elevated to the same extent 3 days after the injury protocol. Muscle injury did not alter the sensitivity of either receptor. These data suggest that a loss or altered sensitivity of the dihydropyridine and ryanodine receptors does not contribute to the excitation-contraction uncoupling immediately after contraction-induced muscle injury. We also concluded that the loss in ryanodine receptors 3 days after injury is not the primary cause of excitation-contraction uncoupling at that time.  相似文献   

14.
The aim of this study was to determine whether muscle fibre degeneration brought about by chronic lowfrequency electrical stimulation was related to the pattern and frequency of stimulation. Rabbit fast-twitch muscles, tibialis anterior and extensor digitorum longus, were stimulated for 9 days with pulse trains ranging in frequency from 1.25 Hz to 10 Hz. Histological data from these muscles were analysed with multivariate statistical techniques. At the lower stimulation frequencies there was a significantly lower incidence of degenerating muscle fibres. Fibres that reacted positively with an antineonatal antibody were most numerous in the sections that revealed the most degeneration. The dependence on frequency was generally similar for the two muscles, but the extensor digitorum longus muscles showed more degeneration than the tibialis anterior at every frequency. Muscles subjected to 10 Hz intermittent stimulation showed significantly less degeneration than muscles stimulated with 5 Hz continuously, although the aggregate number of impulses delivered was the same. The incidence of degeneration in the extensor digitorum longus muscles stimulated at 1.25 Hz was indistinguishable from that in control, unstimulated muscles; for the tibialis anterior muscles, this was also true for stimulation at 2.5 Hz. We conclude that damage is not an inevitable consequence of electrical stimulation. The influence of pattern and frequency on damage should be taken into account when devising neuromuscular stimulation régimes for clinical use.  相似文献   

15.
This paper presents a case study that tested the feasibility and efficacy of using injectable microstimulators (BIONs) in a functional electrical stimulation (FES) device to correct foot drop. Compared with surface stimulation of the common peroneal nerve, stimulation with BIONs provides more selective activation of specific muscles. For example, stimulation of the tibialis anterior (TA) and extensor digitorum longus (EDL) muscles with BIONs produces ankle flexion without excessive inversion or eversion of the foot (i.e., balanced flexion). Efficacy was assessed using a 3-dimensional motion analysis of the ankle and foot trajectories during walking with and without stimulation. Without stimulation, the toe on the affected leg drags across the ground. BION stimulation of the TA muscle and deep peroneal nerve (which innervates TA and EDL) elevates the foot such that the toe clears the ground by 3 cm, which is equivalent to the toe clearance in the less affected leg. The physiological cost index (PCI) measured effort during walking. The PCI equals the change in heart rate (from rest to activity) divided by the walking speed; units are beats per metre. The PCI is high without stimulation (2.29 +/- 0.37, mean +/- SD) and greatly reduced with surface (1.29 +/- 0.10) and BIONic stimulation (1.46 +/- 0.24). Also, walking speed increased from 9.4 +/- 0.4 m/min without stimulation to 19.6 +/- 2.0 m/min with surface and 17.8 +/- 0.7 m/min with BIONic stimulation. These results suggest that FES delivered by a BION is an alternative to surface stimulation and provides selective control of muscle activation.  相似文献   

16.
The role of the intrinsic finger flexor muscles was investigated during finger flexion tasks. A suspension system was used to measure isometric finger forces when the point of force application varied along fingers in a distal-proximal direction. Two biomechanical models, with consideration of extensor mechanism Extensor Mechanism Model (EMM) and without consideration of extensor mechanism Flexor Model (FM), were used to calculate forces of extrinsic and intrinsic finger flexors. When the point of force application was at the distal phalanx, the extrinsic flexor muscles flexor digitorum profundus, FDP, and flexor digitorum superficialis, FDS, accounted for over 80% of the summed force of all flexors, and therefore were the major contributors to the joint flexion at the distal interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints. When the point of force application was at the DIP joint, the FDS accounted for more than 70% of the total force of all flexors, and was the major contributor to the PIP and MCP joint flexion. When the force of application was at the PIP joint, the intrinsic muscle group was the major contributor for MCP flexion, accounting for more than 70% of the combined force of all flexors. The results suggest that the effects of the extensor mechanism on the flexors are relatively small when the location of force application is distal to the PIP joint. When the external force is applied proximally to the PIP joint, the extensor mechanism has large influence on force production of all flexors. The current study provides an experimental protocol and biomechanical models that allow estimation of the effects of extensor mechanism on both the extrinsic and intrinsic flexors in various loading conditions, as well as differentiating the contribution of the intrinsic and extrinsic finger flexors during isometric flexion.  相似文献   

17.
18.
Anatomy of a duplicated human foot from a limb with fibular dimelia.   总被引:2,自引:0,他引:2  
At birth, a patient presented with a right lower limb featuring preaxial polydactyly and fibular dimelia with a complete absence of the tibia. Radiographic studies of the patient's foot revealed a duplicated tarsus with eight metatarsals and toes. The three preaxial toes were surgically removed at 1 year of age. A hallux and four normal-appearing postaxial toes remained. The foot was amputated when the patient was 3 years old. Dissection of the amputated foot revealed that the muscles of the dorsum were normal, except that the tendon of the extensor hallucis brevis muscle inserted into both the hallux and toe 2, rather than only into the hallux. The few abnormalities observed among the muscles on the plantar surface of the foot included absence of the insertions of the tibialis posterior and the abductor hallucis muscles. In addition, the two heads of the adductor hallucis muscle inserted abnormally into the medial (tibial) side of metatarsal 1, rather than into the lateral side. These various muscular anomalies, in addition to the mirror duplication of the foot with the presence of only a single metatarsal 1, leads us to propose that this metatarsal probably represents two lateral (fibular) halves that form a laterally duplicated bone. Although the dorsalis pedis artery was present on the dorsal surface of the foot, most of its derivatives were absent. This artery did give rise to a supernumerary medial branch that ended abruptly in the connective tissue (presumably postsurgical scar) at the medial border of the foot. This branch may have represented a duplicated dorsalis pedis artery associated with the duplicated preaxial portion of the foot. The arteries on the plantar surface of the foot were normal. Even though some anomalies in the pattern of the cutaneous innervation were observed, the nerves of the foot were largely normal. The gross and radiographic anatomy of this specimen and the radiographic anatomy of the leg suggest that some teratogenic event occurred when developmental specification reached the level of the future knee. The teratogenic event, which probably occurred early in the fifth week of development, may have caused damage that led to a lateral duplication of both the leg and the foot with the absence of some of the most medial structures. Teratology 60:272-282, 1999.  相似文献   

19.
A foot specialized for grasping small branches with a divergent opposable hallux (hallucal grasping) represents a key adaptive complex characterizing almost all arboreal non-human euprimates. Evolution of such grasping extremities probably allowed members of a lineage leading to the common ancestor of modern primates to access resources available in a small-branch niche, including angiosperm products and insects. A better understanding of the mechanisms by which euprimates use their feet to grasp will help clarify the functional significance of morphological differences between the euprimate grasp complex and features representing specialized grasping in other distantly related groups (e.g., marsupials and carnivorans) and in closely related fossil taxa (e.g., plesiadapiforms). In particular, among specialized graspers euprimates are uniquely characterized by a large peroneal process on the base of the first metatarsal, but the functional significance of this trait is poorly understood. We tested the hypothesis that the large size of the peroneal process corresponds to the pull of the attaching peroneus longus muscle recruited to adduct the hallux during grasping. Using telemetered electromyography on three individuals of Varecia variegata and two of Eulemur rubriventer, we found that peroneus longus does not generally exhibit activity consistent with an important function in hallucal grasping. Instead, extrinsic digital flexor muscles and, sometimes, the intrinsic adductor hallucis are active in ways that indicate a function in grasping with the hallux. Peroneus longus helps evert the foot and resists its inversion. We conclude that the large peroneal tuberosity that characterizes the hallucal metatarsal of prosimian euprimates does not correlate to "powerful" grasping with a divergent hallux in general, and cannot specifically be strongly linked to vertical clinging and climbing on small-diameter supports. Thus, the functional significance of this hallmark, euprimate feature remains to be determined.  相似文献   

20.
A 7-year-old girl who was unable to flex her left thumb at the interphalangeal joint proved to have an extremely hypoplastic flexor pollicis longus with normal thenar muscles, which is very rare. The flexor digitorum superficialis of the ring finger was transferred to the inserting portion of the flexor pollicis longus tendon with good results. The patient's cooperation seems to be a factor determining the prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号