首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated changes in the sub-cellular distribution of glycelaldehyde-3-phosphate dehydrogenase (GAPDH) after X-ray irradiation in HeLa cells. Twenty-four h after irradiation at 5 Gy, nuclear GAPDH levels increased 2.6-fold, whereas total GAPDH levels increased only 1.2-fold. Knockdown of GAPDH using specific small interfering RNA (siRNA) led to sensitization to X-ray-induced cell death. These results suggest that GAPDH plays a role in the radioresponse.  相似文献   

2.
We investigated changes in the sub-cellular distribution of glycelaldehyde-3-phosphate dehydrogenase (GAPDH) after X-ray irradiation in HeLa cells. Twenty-four h after irradiation at 5 Gy, nuclear GAPDH levels increased 2.6-fold, whereas total GAPDH levels increased only 1.2-fold. Knockdown of GAPDH using specific small interfering RNA (siRNA) led to sensitization to X-ray-induced cell death. These results suggest that GAPDH plays a role in the radioresponse.  相似文献   

3.
4.
Various kinds of stress on human cells induce the formation of endogenous stress granules (SGs). Human Argonaute 2 (hAgo2), the catalytic core component of the RNA-induced silencing complex (RISC), can be recruited to SGs as well as P-bodies (PBs) indicating that the dynamic intracellular distribution of hAgo2 in SGs, in PBs or at other sub-cellular sites could be related to the efficiency of the RNA interference (RNAi) machinery. Here, we studied the influence of heat shock, sodium arsenite (NaAsO2), cycloheximide (CHX) and Lipofectamine 2000-mediated transfection of phosphorothioate (PS)-modified oligonucleotides (ON) on the intracellular localization of hAgo2 and the efficiency of RNAi. Fluorescence microscopy and sedimentation analysis of cell fractions indicate stress-induced accumulation of hAgo2 in SGs and the loss of distinctly composed complexes containing hAgo2 or their sub-cellular context. Transfection of cells with PS-ON induces cell stress that is phenotypically similar to the established inducers heat shock and NaAsO2. The intracellular re-distribution of hAgo2 is related to its increased metabolic stability and to decreased RNAi directed by microRNA or by short interfering RNA. Here, we propose a functional model of the relationship between cell stress, translocation of hAgo2 to SGs providing a depot function, and loss of RNAi activity.  相似文献   

5.
Tight junctions composed of transmembrane proteins, including claudin, occludin, and tricellulin, and peripheral membrane proteins are a major barrier to endothelial permeability, whereas the role of claudin in the regulation of tight junction permeability in nonneural endothelial cells is unclear. This study demonstrates that claudin-1 is dominantly expressed and depletion of claudin-1 using small interfering RNA (siRNA) increased tight junction permeability in EA hy.926 cells, indicating that claudin-1 is a crucial regulator of endothelial tight junction permeability. The ubiquitin-proteasome system has been implicated in the regulation of endocytotic trafficking of plasma membrane proteins. Therefore, the involvement of proteasomes in the localization of claudin-1 was investigated by pharmacological and genetic inhibition of proteasomes using a proteasome inhibitor, N-acetyl-Leu-Leu-Nle-CHO, and siRNA against the β?-subunit of the 20S proteasome, respectively. Claudin-1 was localized at cell-cell contact sites in control cells. Claudin-1 was localized in the cytoplasm in association with Rab5a and EEA-1, a marker of early endosome, following inhibition of proteasomes. Depletion of Rab5a using siRNA reversed the localization of claudin-1 induced by inhibition of proteasomes. These data suggest that proteasomes regulate claudin-1 localization at the plasma membrane, which changes upon proteasomal inhibition to a Rab5a-mediated endosomal localization.  相似文献   

6.
Epithelial Na+ transport is regulated in large part by mechanisms that control expression of the epithelial Na+ channel (ENaC) at the cell surface. Nedd4 and Nedd4-2 are candidates to control ENaC surface expression, but it is not known which of these proteins contributes to ENaC regulation in epithelia. To address this question, we used RNA interference to selectively reduce expression of Nedd4 or Nedd4-2. We found that endogenous Nedd4-2, but not Nedd4, negatively regulates ENaC in two epithelial cell lines (Fischer rat thyroid and H441); small interfering RNA (siRNA) against Nedd4-2 increased amiloride-sensitive Na+ current (compared with control siRNA), but Nedd4 siRNA did not. A mutation associated with Liddle's syndrome (betaR566X) abolished the effect of Nedd4-2 siRNA, suggesting that a defect in ENaC regulation by Nedd4-2 contributes to the pathogenesis of this inherited form of hypertension. Previous work found that Nedd4-2 is phosphorylated by serum and glucocorticoid-regulated kinase, a Ser/Thr kinase induced by steroid hormones. Here we found that Nedd4-2 phosphorylation contributes to ENaC regulation by steroid hormones. Consistent with this model, ENaC stimulation by dexamethasone was reduced by Nedd4-2 siRNA and by overexpression of a mutant Nedd4-2 lacking serum and glucocorticoid-regulated kinase phosphorylation sites. Thus, endogenous Nedd4-2 negatively regulates ENaC in epithelia and is a component of a signaling pathway by which steroid hormones regulate ENaC. Defects in this regulation may contribute to the pathogenesis of hypertension.  相似文献   

7.
Processing bodies (P-bodies) are cytoplasmic foci implicated in the regulation of mRNA translation, storage, and degradation. Key effectors of microRNA (miRNA)-mediated RNA interference (RNAi), such as Argonaute-2 (Ago2), miRNAs, and their cognate mRNAs, are localized to these structures; however, the precise role that P-bodies and their component proteins play in small interfering RNA (siRNA)-mediated RNAi remains unclear. Here, we investigate the relationship between siRNA-mediated RNAi, RNAi machinery proteins, and P-bodies. We show that upon transfection into cells, siRNAs rapidly localize to P-bodies in their native double-stranded conformation, as indicated by fluorescence resonance energy transfer imaging and that Ago2 is at least in part responsible for this siRNA localization pattern, indicating RISC involvement. Furthermore, siRNA transfection induces up-regulated expression of both GW182, a key P-body component, and Ago2, indicating that P-body localization and interaction with GW182 and Ago2 are important in siRNA-mediated RNAi. By virtue of being centers where these proteins and siRNAs aggregate, we propose that the P-body microenvironment, whether as microscopically visible foci or submicroscopic protein complexes, facilitates siRNA processing and siRNA-mediated silencing through the action of its component proteins.  相似文献   

8.
Light controllable siRNAs regulate gene suppression and phenotypes in cells   总被引:2,自引:0,他引:2  
Small interfering RNA (siRNA) is widely recognized as a powerful tool for targeted gene silencing. However, siRNA gene silencing occurs during transfection, limiting its use is in kinetic studies, deciphering toxic and off-target effects and phenotypic assays requiring temporal, and/or spatial regulation. We developed a novel controllable siRNA (csiRNA) that is activated by light. A single photo removable group is coupled during oligonucleotide synthesis to the 5' end of the antisense strand of the siRNA, which blocks the siRNA's activity. A low dose of light activates the siRNA, independent of transfection resulting in knock down of specific target mRNAs and proteins (GAPDH, p53, survivin, hNuf2) without stimulating non-specific effects such as regulated protein kinase PKR and induction of the interferon response. We demonstrate survivin and hNuf2 csiRNAs temporally knockdown their mRNAs causing multinucleation and cell death by mitotic arrest, respectively. Furthermore, we demonstrate a dose-dependent light regulation of hNuf2 csiRNA activity and resulting phenotype. The light controllable siRNAs are introduced into cells using commercially available reagents including the MPG peptide based delivery system. The csiRNAs are comparable to standard siRNAs in their transfection efficiency and potency of gene silencing. This technology should be of interest for phenotypic assays such as cell survival, cell cycle regulation, and cell development.  相似文献   

9.
FOXO1在胰岛β细胞中的表达及对增殖凋亡功能的影响   总被引:1,自引:0,他引:1  
胰岛功能受损的分子机制研究是揭示2型糖尿病(T2DM)发病机制的核心问题.FOXO1是胰岛素信号下游的重要靶转录因子,参与胰岛的发育,但在分化成熟的胰岛β细胞中的功能尚未阐明.本研究采用免疫组化方法结合激光共聚焦技术观察FOXO1在胰岛的表达及细胞定位;通过基因介导的转移技术和siRNA干预技术,在培养的大鼠胰腺癌β细胞系(INS-1E)中特异高表达组成性活性的FOXO1(FOXO1-AAA)或抑制其表达水平,观察FOXO1表达水平的改变对β细胞增殖、凋亡的影响.免疫组化结果显示,FOXO1在正常胰腺组织中仅特异地表达在胰岛内.采用胰岛素与FOXO1的免疫荧光双标结合共聚焦观察进一步揭示,FOXO1主要表达在胰岛的β细胞中.Western印迹显示,腺病毒介导的基因转移技术在体外培养的INS-1E细胞中过表达FOXO1-AAA或其特异的siRNA均能有效地上调或抑制其表达水平3H-TdR掺入实验结果显示,降低FOXO1的表达显著促进细胞增殖;反之,高表达FOXO1显著抑制细胞增殖.与之相应,MTT检测结果显示,降低FOXO1的表达对细胞存活有显著促进作用,高表达FOXO1对细胞存活有显著抑制作用.进一步采用流式细胞仪检测细胞凋亡,结果显示降低FOXO1的表达使β细胞凋亡率降低,反之高表达FOXO1使β细胞凋亡率增加.研究结果证实,胰岛β细胞中的FOXO1参与β细胞的存活、增殖、凋亡的调节.病理性高表达FOXO1可能通过阻止β细胞增殖、促进β细胞凋亡从而减少β细胞的数量,在T2DM发生中可能起重要作用.  相似文献   

10.
Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.  相似文献   

11.
Insufficient fetal surfactant production leads to respiratory distress syndrome among preterm infants. Neuregulin signals the onset of fetal surfactant phospholipid synthesis through formation of erbB receptor dimers. We hypothesized that erbB4 downregulation in fetal type II epithelial cells will downregulate not only fetal surfactant phospholipid synthesis, but also affect proliferation and erbB receptor localization. We tested these hypotheses using small interfering RNA (siRNA) directed against the erbB4 gene to silence erbB4 receptor function in cultures of primary day 19 fetal rat lung type II cells. ErbB4 siRNA treatment inhibited erbB4 receptor protein expression, fibroblast-conditioned medium induced erbB4 phosphorylation, and fetal surfactant phospholipid synthesis. Cell proliferation, measured as thymidine incorporation, was also inhibited by erbB4 siRNA treatment. Downregulation of erbB4 receptor protein changed erbB1 localization at baseline and after stimulation, as determined by confocal microscopy and subcellular fractionation. We conclude that erbB4 is an important receptor in the control of fetal lung type II cell maturation.  相似文献   

12.
Small interfering RNA (siRNA) is widely recognized as a powerful tool for targeted gene silencing. However, siRNA gene silencing occurs during transfection, limiting its use is in kinetic studies, deciphering toxic and off-target effects and phenotypic assays requiring temporal, and/or spatial regulation. We developed a novel controllable siRNA (csiRNA) that is activated by light. A single photo removable group is coupled during oligonucleotide synthesis to the 5′ end of the antisense strand of the siRNA, which blocks the siRNA's activity. A low dose of light activates the siRNA, independent of transfection resulting in knock down of specific target mRNAs and proteins (GAPDH, p53, survivin, hNuf2) without stimulating non-specific effects such as regulated protein kinase PKR and induction of the interferon response. We demonstrate survivin and hNuf2 csiRNAs temporally knockdown their mRNAs causing multinucleation and cell death by mitotic arrest, respectively. Furthermore, we demonstrate a dose-dependent light regulation of hNuf2 csiRNA activity and resulting phenotype. The light controllable siRNAs are introduced into cells using commercially available reagents including the MPG peptide based delivery system. The csiRNAs are comparable to standard siRNAs in their transfection efficiency and potency of gene silencing. This technology should be of interest for phenotypic assays such as cell survival, cell cycle regulation, and cell development.  相似文献   

13.
It has previously been reported that the globular form of adiponectin (gAd), mature adipocyte-derived cytokine, induced generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. This study investigated whether diacylglycerol kinases (DGKs), enzymes functioning in sub-cellular signalling pathways, had a role on gAd-induced ROS generation in RAW 264 cells. Administration of R59022, a specific inhibitor for DGK, reduced gAd-induced ROS generation and NO release. RAW 264 cell expressed DGKα mRNA. Depression of DGKα mRNA by RNA interference significantly reduced the ROS generation in response to gAd treatment. Interestingly, transfection with the DGKα-specific small interfering RNA attenuated the expression level of Nox1 mRNA in gAd-treated RAW 264 cells. In addition, the DGKα knockdown with siRNA suppressed gAd-induced NO release.  相似文献   

14.
In Drosophila melanogaster, the Dicer-2/R2D2 complex initiates RNA interference (RNAi) by processing long double-stranded RNA (dsRNA) into small interfering RNA (siRNA). Recent biochemical studies suggest that the Dcr-2/R2D2 complex also facilitates incorporation of siRNA into the RNA-induced silencing complex (siRISC). Here we present genetic evidence that R2D2 and Dcr-2 are both required for loading siRNA onto the siRISC complex. Consistent with this, only the Dcr-2/R2D2 complex, but neither Dcr-2 nor R2D2 alone, can efficiently interact with duplex siRNA. Furthermore, both dsRNA-binding domains of R2D2 are critical for binding to siRNA and promoting assembly of the siRISC complexes.  相似文献   

15.
16.
《Nucleic acids research》2009,37(9):2867-2881
The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3′-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity.  相似文献   

17.
Phagocytic macrophages and dendritic cells are desirable targets for potential RNAi (RNA interference) therapeutics because they often mediate pathogenic inflammation and autoimmune responses. We recently engineered a complex 5 component glucan-based encapsulation system for siRNA (small interfering RNA) delivery to phagocytes. In experiments designed to simplify this original formulation, we discovered that the amphipathic peptide Endo-Porter forms stable nanocomplexes with siRNA that can mediate potent gene silencing in multiple cell types. In order to restrict such gene silencing to phagocytes, a method was developed to entrap siRNA-Endo-Porter complexes in glucan shells of 2-4 μm diameter in the absence of other components. The resulting glucan particles containing fluorescently labelled siRNA were readily internalized by macrophages, but not other cell types, and released the labelled siRNA into the macrophage cytoplasm. Intraperitoneal administration of such glucan particles containing siRNA-Endo-Porter complexes to mice caused gene silencing specifically in macrophages that internalized the particles. These results from the present study indicate that specific targeting to phagocytes is mediated by the glucan, whereas Endo-Porter peptide serves both to anchor siRNA within glucan particles and to catalyse escape of siRNA from phagosomes. Thus we have developed a simplified siRNA delivery system that effectively and specifically targets phagocytes in culture or in intact mice.  相似文献   

18.
RNA interference has become a powerful tool for silencing of gene expression in mammals and plants. To determine the effect of Smad3 on transforming growth factor-beta signaling, we constructed a small interfering RNA (siRNA) targeted to Smad3. This siRNA inhibited expression of the endogenous Smad3 leading to the prevention of nuclear localization of Smad3. Further, Smad3 siRNA prevented not only anti-proliferative activity of TGF-beta1 but also TGF-beta1-inducible promoter activity.  相似文献   

19.
Staufen1 (Stau1) is an RNA-binding protein involved in transport, localization, decay, and translational control of mRNA. In neurons, it is present in cell bodies and also in RNA granules which are transported along dendrites. Dendritic mRNA localization might be involved in long-term synaptic plasticity and memory. To determine the role of Stau1 in synaptic function, we examined the effects of Stau1 down-regulation in hippocampal slice cultures using small interfering RNA (siRNA). Biolistic transfection of Stau1 siRNA resulted in selective down-regulation of Stau1 in slice cultures. Consistent with a role of Stau1 in transporting mRNAs required for synaptic plasticity, Stau1 down-regulation impaired the late form of chemically induced long-term potentiation (L-LTP) without affecting early-LTP, mGluR1/5-mediated long-term depression, or basal evoked synaptic transmission. Stau1 down-regulation decreased the amplitude and frequency of miniature excitatory postsynaptic currents, suggesting a role in maintaining efficacy at hippocampal synapses. At the cellular level, Stau1 down-regulation shifted spine shape from regular to elongated spines, without changes in spine density. The change in spine shape could be rescued by an RNA interference-resistant Stau1 isoform. Therefore, Stau1 is important for processing and/or transporting in dendrites mRNAs that are critical in regulation of synaptic strength and maintenance of functional connectivity changes underlying hippocampus-dependent learning and memory.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号