首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using machine learning techniques. It is freely available at http://lightning.med.monash.edu.au/PROSPER/.  相似文献   

3.
4.
Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.  相似文献   

5.
6.
RNA-Seq techniques generate hundreds of millions of short RNA reads using next-generation sequencing (NGS). These RNA reads can be mapped to reference genomes to investigate changes of gene expression but improved procedures for mining large RNA-Seq datasets to extract valuable biological knowledge are needed. RNAMiner—a multi-level bioinformatics protocol and pipeline—has been developed for such datasets. It includes five steps: Mapping RNA-Seq reads to a reference genome, calculating gene expression values, identifying differentially expressed genes, predicting gene functions, and constructing gene regulatory networks. To demonstrate its utility, we applied RNAMiner to datasets generated from Human, Mouse, Arabidopsis thaliana, and Drosophila melanogaster cells, and successfully identified differentially expressed genes, clustered them into cohesive functional groups, and constructed novel gene regulatory networks. The RNAMiner web service is available at http://calla.rnet.missouri.edu/rnaminer/index.html.  相似文献   

7.
8.
This dataset records the occurrence and inventory of molluscan fauna on Gueishan Island, the only active volcanic island in Taiwan, based on the literature survey and field investigation conducted between 2011 and 2012. The literature review involved seven studies published from 1934 to 2003, which collectively reported 112 species from 61 genera and 37 families of Mollusca on Gueishan Island. Through our field investigation, we identified 34 species from 28 genera and 23 families. Fourteen of these species were new records on Gueishan Island: Liolophura japonica, Lottia luchuana, Nerita costata, Nerita rumphii, Diplommatina suganikeiensis, Littoraria undulata, Solenomphala taiwanensis, Assiminea sp., Siphonaria laciniosa, Laevapex nipponica, Carychium hachijoensis, Succinea erythrophana, Zaptyx crassilamellata, and Allopeas pyrgula. In Total, there are 126 species from 71 genera and 45 families of Mollusca on Gueishan Island. These data have been published through GBIF [http://taibif.org.tw/ipt/resource.do?r=gueishan_island] and integrated into the Taiwan Malacofauna Database (http://shell.sinica.edu.tw/).  相似文献   

9.
10.
11.
Aggregatibacter actinomycetemcomitans is a major etiological agent of periodontitis. Here we report the complete genome sequence of serotype c strain D11S-1, which was recovered from the subgingival plaque of a patient diagnosed with generalized aggressive periodontitis.Aggregatibacter actinomycetemcomitans is a major etiologic agent of human periodontal disease, in particular aggressive periodontitis (12). The natural population of A. actinomycetemcomitans is clonal (7). Six A. actinomycetemcomitans serotypes are distinguished based on the structural and serological characteristics of the O antigen of LPS (6, 7). Three of the serotypes (a, b, and c) comprise >80% of all strains, and each serotype represents a distinct clonal lineage (1, 6, 7). Serotype c strain D11S-1 was cultured from a subgingival plaque sample of a patient diagnosed with generalized aggressive periodontitis. The complete genome sequencing of the strain was determined by 454 pyrosequencing (10), which achieved 25× coverage. Assembly was performed using the Newbler assembler (454, Branford, CT) and generated 199 large contigs, with 99.3% of the bases having a quality score of 40 and above. The contigs were aligned with the genome of the sequenced serotype b strain HK1651 (http://www.genome.ou.edu/act.html) using software written in house. The putative contig gaps were then closed by primer walking and sequencing of PCR products over the gaps. The final genome assembly was further confirmed by comparison of an in silico NcoI restriction map to the experimental map generated by optical mapping (8). The genome structure of the D11S-1 strain was compared to that of the sequenced strain HK1651 using the program MAUVE (2, 3). The automated annotation was done using a protocol similar to the annotation engine service at The Institute for Genomic Research/J. Craig Venter Institute with some local modifications. Briefly, protein-coding genes were identified using Glimmer3 (4). Each protein sequence was then annotated by comparing to the GenBank nonredundant protein database. BLAST-Extend-Repraze was applied to the predicted genes to identify genes that might have been truncated due to a frameshift mutation or premature stop codon. tRNA and rRNA genes were identified by using tRNAScan-SE (9) and a similarity search to our in-house RNA database, respectively.The D11S-1 circular genome contains 2,105,764 nucleotides, a GC content of 44.55%, 2,134 predicted coding sequences, and 54 tRNA and 19 rRNA genes (see additional data at http://expression.washington.edu/bumgarnerlab/publications.php). The distribution of predicted genes based on functional categories was similar between D11S-1 and HK1651 (http://expression.washington.edu/bumgarnerlab/publications.php). One hundred six and 86 coding sequences were unique to strain D11S-1 and HK1651, respectively (http://expression.washington.edu/bumgarnerlab/publications.php). Genomic islands were identified based on annotations for strain HK1651 and based on manual inspection of contiguous D11S-1 specific DNA regions with G+C bias (http://expression.washington.edu/bumgarnerlab/publications.php). Among 12 identified genomics islands, 5 (B, C, D, E and G; cytolethal distending toxin gene cluster, tight adherence gene cluster, O-antigen biosynthesis and transport gene cluster, leukotoxin gene cluster, and lipoligosaccharide biosynthesis enzyme gene, respectively) correspond to islands 2 to 5 and 8 of strain HK1651 (http://www.oralgen.lanl.gov/) (5). Island F (∼5 kb) is homologous to a portion of the 12.5-kb island 7 in HK1651. Five genomic islands (H to L) were unique to strain D11S-1. The remaining island (A) is a fusion of genomic islands 1 and 6, in strain HK1651. The genome of D11S-1 is largely in synteny with the genome of the sequenced serotype b strain HK1651 but contained several large-scale genomic rearrangements.Strain D11S-1 harbors a 43-kb bacteriophage and two plasmids of 31 and 23 kb (http://expression.washington.edu/bumgarnerlab/publications.php). Excluding an ∼9-kb region of low homology, the phage showed >90% nucleotide sequence identity with AaΦ23 (11). A 49-bp attB site (11) was identified at coordinates 2,024,825 to 2,024,873. The location of the inserted phage was identified in the optical map of strain D11S-1 and further confirmed by PCR amplification and sequencing of the regions flanking the insertion site. A closed circular form of the phage was also detected in strain D11S-1 by PCR analysis of the phage ends. The 23-kb plasmid is homologous to pVT745 (92% nucleotide identities). The 31-kb plasmid is a novel plasmid. It has significant homologies in short regions (<2 kb) to Haemophilus influenzae biotype aegyptius plasmid pF1947 and other plasmids.  相似文献   

12.
An (Awassi × Merino) × Merino backcross family of 172 ewes was used to map quantitative trait loci (QTL) for different milk production traits on a framework map of 200 loci across all autosomes. From five previously proposed mathematical models describing lactation curves, the Wood model was considered the most appropriate due to its simplicity and its ability to determine ovine lactation curve characteristics. Derived milk traits for milk, fat, protein and lactose yield, as well as percentage composition and somatic cell score were used for single and two-QTL approaches using maximum likelihood estimation and regression analysis. A total of 15 significant (P < 0.01) and additional 25 suggestive (P < 0.05) QTL were detected across both single QTL methods and all traits. In preparation of a meta-analysis, all QTL results were compared with a meta-assembly of QTL for milk production traits in dairy ewes from various public domain sources and can be found on the ReproGen ovine gbrowser http://crcidp.vetsci.usyd.edu.au/cgi-bin/gbrowse/oaries_genome/. Many of the QTL for milk production traits have been reported on chromosomes 1, 3, 6, 16 and 20. Those on chromosomes 3 and 20 are in strong agreement with the results reported here. In addition, novel QTL were found on chromosomes 7, 8, 9, 14, 22 and 24. In a cross-species comparison, we extended the meta-assembly by comparing QTL regions of sheep and cattle, which provided strong evidence for synteny conservation of QTL regions for milk, fat, protein and somatic cell score data between cattle and sheep.  相似文献   

13.
14.
The development of Next Generation Sequencing technologies, capable of sequencing hundreds of millions of short reads (25–70 bp each) in a single run, is opening the door to population genomic studies of non-model species. In this paper we present SHRiMP - the SHort Read Mapping Package: a set of algorithms and methods to map short reads to a genome, even in the presence of a large amount of polymorphism. Our method is based upon a fast read mapping technique, separate thorough alignment methods for regular letter-space as well as AB SOLiD (color-space) reads, and a statistical model for false positive hits. We use SHRiMP to map reads from a newly sequenced Ciona savignyi individual to the reference genome. We demonstrate that SHRiMP can accurately map reads to this highly polymorphic genome, while confirming high heterozygosity of C. savignyi in this second individual. SHRiMP is freely available at http://compbio.cs.toronto.edu/shrimp.  相似文献   

15.
Exome sequencing has been widely used in detecting pathogenic nonsynonymous single nucleotide variants (SNVs) for human inherited diseases. However, traditional statistical genetics methods are ineffective in analyzing exome sequencing data, due to such facts as the large number of sequenced variants, the presence of non-negligible fraction of pathogenic rare variants or de novo mutations, and the limited size of affected and normal populations. Indeed, prevalent applications of exome sequencing have been appealing for an effective computational method for identifying causative nonsynonymous SNVs from a large number of sequenced variants. Here, we propose a bioinformatics approach called SPRING (Snv PRioritization via the INtegration of Genomic data) for identifying pathogenic nonsynonymous SNVs for a given query disease. Based on six functional effect scores calculated by existing methods (SIFT, PolyPhen2, LRT, MutationTaster, GERP and PhyloP) and five association scores derived from a variety of genomic data sources (gene ontology, protein-protein interactions, protein sequences, protein domain annotations and gene pathway annotations), SPRING calculates the statistical significance that an SNV is causative for a query disease and hence provides a means of prioritizing candidate SNVs. With a series of comprehensive validation experiments, we demonstrate that SPRING is valid for diseases whose genetic bases are either partly known or completely unknown and effective for diseases with a variety of inheritance styles. In applications of our method to real exome sequencing data sets, we show the capability of SPRING in detecting causative de novo mutations for autism, epileptic encephalopathies and intellectual disability. We further provide an online service, the standalone software and genome-wide predictions of causative SNVs for 5,080 diseases at http://bioinfo.au.tsinghua.edu.cn/spring.  相似文献   

16.
The software tool PBEAM provides a parallel implementation of the BEAM, which is the first algorithm for large scale epistatic interaction mapping, including genome-wide studies with hundreds of thousands of markers. BEAM describes markers and their interactions with a Bayesian partitioning model and computes the posterior probability of each marker sets via Markov Chain Monte Carlo (MCMC). PBEAM takes the advantage of simulating multiple Markov chains simultaneously. This design can efficiently reduce ~n-fold execution time in the circumstance of n CPUs. The implementation of PBEAM is based on MPI libraries.

Availability

PBEAM is available for download at http://bioinfo.au.tsinghua.edu.cn/pbeam/  相似文献   

17.

Background and Aim

Mild to moderate depression is common in those with cardiovascular disease and undertreated. We aimed to evaluate the effectiveness of internet-delivered Cognitive Behaviour Therapy (iCBT) on depressive symptom severity and adherence to medical advice and lifestyle interventions in adults with mild to moderate depression and high cardiovascular disease (CVD) risks.

Methods

Randomised double-blind, 12 week attention-controlled trial comparing an iCBT programme (E-couch) with an internet-delivered attention control health information package (HealthWatch, n = 282). The primary outcome was depression symptom level on the nine-item Patient Health Questionnaire (PHQ-9) (trial registration: ACTRN12610000085077).

Results

487/562 (88%) participants completed the endpoint assessment. 383/562 (70%) were currently treated for cardiovascular disease and 314/562 (56%) had at least one other comorbid condition. In ITT analysis of 562 participants iCBT produced a greater decline in the mean PHQ-9 score compared to the attention control of 1.06 (95% CI: 0.23–1.89) points, with differences between the two arms increasing over the intervention period (time by treatment effect interaction p = .012). There were also larger improvements in adherence (2.16 points; 95% CI: 0.33–3.99), reductions in anxiety (0.96 points; 95% CI: 0.19–1.73), and a greater proportion engaging in beneficial physical activity (Odds Ratio 1.91, 95%CI: 1.01–3.61) in the iCBT participants but no effect upon disability, or walking time/day. There were no withdrawals due to study related adverse events.

Conclusions

In people with mild to moderate depression and high levels of CVD risk factors, a freely accessible iCBT programme (http://www.ecouch.anu.edu.au) produced a small, but robust, improvement in depressive symptoms, adherence and some health behaviours.

Trial Registration

Australian and New Zealand Clinical Trials Registry ACTRN12610000085077  相似文献   

18.
We describe the first dynamic programming algorithm that computes the expected degree for the network, or graph G = (V, E) of all secondary structures of a given RNA sequence a = a 1, …, a n. Here, the nodes V correspond to all secondary structures of a, while an edge exists between nodes s, t if the secondary structure t can be obtained from s by adding, removing or shifting a base pair. Since secondary structure kinetics programs implement the Gillespie algorithm, which simulates a random walk on the network of secondary structures, the expected network degree may provide a better understanding of kinetics of RNA folding when allowing defect diffusion, helix zippering, and related conformation transformations. We determine the correlation between expected network degree, contact order, conformational entropy, and expected number of native contacts for a benchmarking dataset of RNAs. Source code is available at http://bioinformatics.bc.edu/clotelab/RNAexpNumNbors.  相似文献   

19.
The necrotrophic fungus Ascochyta rabiei causes Ascochyta blight (AB) disease in chickpea. A. rabiei infects all aerial parts of the plant, which results in severe yield loss. At present, AB disease occurs in most chickpea‐growing countries. Globally increased incidences of A. rabiei infection and the emergence of new aggressive isolates directed the interest of researchers toward understanding the evolution of pathogenic determinants in this fungus. In this review, we summarize the molecular and genetic studies of the pathogen along with approaches that are helping in combating the disease. Possible areas of future research are also suggested.Taxonomykingdom Mycota, phylum Ascomycota, class Dothideomycetes, subclass Coelomycetes, order Pleosporales, family Didymellaceae, genus Ascochyta, species rabiei. Primary host A. rabiei survives primarily on Cicer species.Disease symptoms A. rabiei infects aboveground parts of the plant including leaves, petioles, stems, pods, and seeds. The disease symptoms first appear as watersoaked lesions on the leaves and stems, which turn brown or dark brown. Early symptoms include small circular necrotic lesions visible on the leaves and oval brown lesions on the stem. At later stages of infection, the lesions may girdle the stem and the region above the girdle falls off. The disease severity increases at the reproductive stage and rounded lesions with concentric rings, due to asexual structures called pycnidia, appear on leaves, stems, and pods. The infected pod becomes blighted and often results in shrivelled and infected seeds.Disease management strategiesCrop failures may be avoided by judicious practices of integrated disease management based on the use of resistant or tolerant cultivars and growing chickpea in areas where conditions are least favourable for AB disease development. Use of healthy seeds free of A. rabiei, seed treatments with fungicides, and proper destruction of diseased stubbles can also reduce the fungal inoculum load. Crop rotation with nonhost crops is critical for controlling the disease. Planting moderately resistant cultivars and prudent application of fungicides is also a way to combat AB disease. However, the scarcity of AB‐resistant accessions and the continuous evolution of the pathogen challenges the disease management process.Useful websites https://www.ndsu.edu/pubweb/pulse‐info/resourcespdf/Ascochyta%20blight%20of%20chickpea.pdf https://saskpulse.com/files/newsletters/180531_ascochyta_in_chickpeas‐compressed.pdf http://www.pulseaus.com.au/growing‐pulses/bmp/chickpea/ascochyta‐blight http://agriculture.vic.gov.au/agriculture/pests‐diseases‐and‐weeds/plant‐diseases/grains‐pulses‐and‐cereals/ascochyta‐blight‐of‐chickpea http://www.croppro.com.au/crop_disease_manual/ch05s02.php https://www.northernpulse.com/uploads/resources/722/handout‐chickpeaascochyta‐nov13‐2011.pdf http://oar.icrisat.org/184/1/24_2010_IB_no_82_Host_Plant https://www.crop.bayer.com.au/find‐crop‐solutions/by‐pest/diseases/ascochyta‐blight  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号