首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The E2 ubiquitin-conjugating enzymes UbcH7 and UbcH5B both show specific binding to the RING (really interesting new gene) domain of the E3 ubiquitin-protein ligase c-Cbl, but UbcH7 hardly supports ubiquitination of c-Cbl and substrate in a reconstituted system. Here, we found that neither structural changes nor subtle differences in the E2-E3 interaction surface are possible explanations for the functional specificity of UbcH5B and UbcH7 in their interaction with c-Cbl. The quick transfer of ubiquitin from the UbcH5B∼Ub thioester to c-Cbl or other ubiquitin acceptors suggests that UbcH5B might functionally be a relatively pliable E2 enzyme. In contrast, the UbcH7∼Ub thioester is too stable to transfer ubiquitin under our assay conditions, indicating that UbcH7 might be a more specific E2 enzyme. Our results imply that the interaction specificity between c-Cbl and E2 is required but not sufficient for transfer of ubiquitin to potential targets.  相似文献   

2.
3.
RING finger proteins constitute the large majority of ubiquitin ligases (E3s) and function by interacting with ubiquitin‐conjugating enzymes (E2s) charged with ubiquitin. How low‐affinity RING–E2 interactions result in highly processive substrate ubiquitination is largely unknown. The RING E3, gp78, represents an excellent model to study this process. gp78 includes a high‐affinity secondary binding region for its cognate E2, Ube2g2, the G2BR. The G2BR allosterically enhances RING:Ube2g2 binding and ubiquitination. Structural analysis of the RING:Ube2g2:G2BR complex reveals that a G2BR‐induced conformational effect at the RING:Ube2g2 interface is necessary for enhanced binding of RING to Ube2g2 or Ube2g2 conjugated to Ub. This conformational effect and a key ternary interaction with conjugated ubiquitin are required for ubiquitin transfer. Moreover, RING:Ube2g2 binding induces a second allosteric effect, disrupting Ube2g2:G2BR contacts, decreasing affinity and facilitating E2 exchange. Thus, gp78 is a ubiquitination machine where multiple E2‐binding sites coordinately facilitate processive ubiquitination.  相似文献   

4.
5.
Ubiquitin ligases are critical components of the ubiquitination process that determine substrate specificity and, in collaboration with E2 ubiquitin-conjugating enzymes, regulate the nature of polyubiquitin chains assembled on their substrates. Cellular inhibitor of apoptosis (c-IAP1 and c-IAP2) proteins are recruited to TNFR1-associated signalling complexes where they regulate receptor-stimulated NF-κB activation through their RING domain ubiquitin ligase activity. Using a directed yeast two-hybrid screen, we found several novel and previously identified E2 partners of IAP RING domains. Among these, the UbcH5 family of E2 enzymes are critical regulators of the stability of c-IAP1 protein following destabilizing stimuli such as TWEAK or CD40 signalling or IAP antagonists. We demonstrate that c-IAP1 and UbcH5 family promote K11-linked polyubiquitination of receptor-interacting protein 1 (RIP1) in vitro and in vivo. We further show that TNFα-stimulated NF-κB activation involves endogenous K11-linked ubiquitination of RIP1 within the TNFR1 signalling complex that is c-IAP1 and UbcH5 dependent. Lastly, NF-κB essential modifier efficiently binds K11-linked ubiquitin chains, suggesting that this ubiquitin linkage may have a signalling role in the activation of proliferative cellular pathways.  相似文献   

6.
NK lytic-associated molecule (NKLAM) is a protein involved in the cytolytic function of NK cells and CTLs. It has been localized to the cytolytic granules in NK cells and is up-regulated when cells are exposed to cytokines IL-2 or IFN-beta. We report in this study that NKLAM contains a cysteine-rich really interesting new gene (RING) in between RING-RING domain, and that this domain possesses strong homology to the RING domain of the known E3 ubiquitin ligase, Dorfin. To determine whether NKLAM functions as an E3 ligase, we performed coimmunoprecipitation binding assays with ubiquitin conjugates (Ubcs) UbcH7, UbcH8, and UbcH10. We demonstrated that both UbcH7 and UbcH8 bind to full-length NKLAM. We then performed a similar binding assay using endogenous NKLAM and UbcH8 expressed by human NK clone NK3.3 to show that the protein interaction occurs in vivo. Using the yeast two-hybrid system, we identified uridine kinase like-1 (URKL-1) protein as a substrate for NKLAM. We confirmed that NKLAM and URKL-1 interact in mammalian cells by using both immunoprecipitation and confocal microscopy. We demonstrated decreased protein expression and enhanced ubiquitination of URKL-1 in the presence of NKLAM. These data indicate that NKLAM is a RING finger protein that binds Ubcs and has as one of its substrates, URKL-1, thus defining this cytolytic protein as an E3 ubiquitin ligase.  相似文献   

7.
Terf/TRIM17 is a member of the TRIM family of proteins, which is characterized by the RING finger, B-box, and coiled-coil domains. In the present study, we found that terf interacts with TRIM44. Terf underwent ubiquitination in vitro in the presence of the E2 enzyme UbcH6; this suggests that terf exhibits E3 ubiquitin ligase activity. It was also found that terf was conjugated with polyubiquitin chains and stabilized by the proteasome inhibitor in mammalian cells; this suggested that terf rendered itself susceptible to proteasomal degradation through polyubiquitination. We also found that TRIM44 inhibited ubiquitination of terf, and thus stabilized the protein. The N-terminal region of TRIM44 contains a zinc-finger domain found in ubiquitin hydrolases (ZF UBP) and ubiquitin specific proteases (USPs). Thus, we proposed that TRIM44 may function as a new class of the “USP-like-TRIM” which regulates the activity of associated TRIM proteins.  相似文献   

8.
The transfer of ubiquitin (Ub) to a substrate protein requires a cascade of E1 activating, E2 conjugating, and E3 ligating enzymes. E3 Ub ligases containing U-box and RING domains bind both E2~Ub conjugates and substrates to facilitate transfer of the Ub molecule. Although the overall mode of action of E3 ligases is well established, many of the mechanistic details that determine the outcome of ubiquitination are poorly understood. CHIP (carboxyl terminus of Hsc70-interacting protein) is a U-box E3 ligase that serves as a co-chaperone to heat shock proteins and is critical for the regulation of unfolded proteins in the cytosol. We have performed a systematic analysis of the interactions of CHIP with E2 conjugating enzymes and found that only a subset bind and function. Moreover, some E2 enzymes function in pairs to create products that neither create individually. Characterization of the products of these reactions showed that different E2 enzymes produce different ubiquitination products, i.e. that E2 determines the outcome of Ub transfer. Site-directed mutagenesis on the E2 enzymes Ube2D1 and Ube2L3 (UbcH5a and UbcH7) established that an SPA motif in loop 7 of E2 is required for binding to CHIP but is not sufficient for activation of the E2~Ub conjugate and consequent ubiquitination activity. These data support the proposal that the E2 SPA motif provides specificity for binding to CHIP, whereas activation of the E2~Ub conjugate is derived from other molecular determinants.  相似文献   

9.
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.  相似文献   

10.
11.
Pathogenic bacteria introduce effector proteins directly into the cytosol of eukaryotic cells to promote invasion and colonization. OspG, a Shigella spp. effector kinase, plays a role in this process by helping to suppress the host inflammatory response. OspG has been reported to bind host E2 ubiquitin‐conjugating enzymes activated with ubiquitin (E2~Ub), a key enzyme complex in ubiquitin transfer pathways. A co‐crystal structure of the OspG/UbcH5c~Ub complex reveals that complex formation has important ramifications for the activity of both OspG and the UbcH5c~Ub conjugate. OspG is a minimal kinase domain containing only essential elements required for catalysis. UbcH5c~Ub binding stabilizes an active conformation of the kinase, greatly enhancing OspG kinase activity. In contrast, interaction with OspG stabilizes an extended, less reactive form of UbcH5c~Ub. Recognizing conserved E2 features, OspG can interact with at least ten distinct human E2s~Ub. Mouse oral infection studies indicate that E2~Ub conjugates act as novel regulators of OspG effector kinase function in eukaryotic host cells.  相似文献   

12.
The protein CNOT4 possesses an N-terminal RING finger domain that acts as an E3 ubiquitin ligase and specifically interacts with UbcH5B, a ubiquitin-conjugating enzyme. The structure of the CNOT4 RING domain has been solved and the amino acids important for the binding to UbcH5B have been mapped. Here, the residues of UbcH5B important for the binding to CNOT4 RING domain were identified by NMR chemical shift perturbation experiments, and these data were used to generate structural models of the complex with the program HADDOCK. Together with the NMR data, additional biochemical data were included in a second docking, and comparisons of the resulting model with the structure of the c-Cbl/UbcH7 complex reveal some significant differences, notably at specific residues, and give structural insights into the E2/E3 specificity.  相似文献   

13.
14.
Protein ubiquitination plays an important role in regulating the abundance and conformation of a broad range of eukaryotic proteins. This process involves a cascade of enzymes including ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). E1 and E2 represent two families of structurally related proteins and are relatively well characterized. In contrast, the nature and mechanism of E3, proposed to contain activities in catalyzing isopeptide bond formation (ubiquitin ligation) and substrate targeting, remains inadequately understood. Two major families of E3 ubiquitin ligases, the HECT (for homologous to E6-AP C terminus) family and the RING family, have been identified that utilize distinct mechanisms in promoting isopeptide bond formation. Here, we showed that purified RING finger domain of ROC1, an essential subunit of SKP1-cullin/CDC53-F box protein ubiquitin ligases, was sufficient to activate UBCH5c to synthesize polyubiquitin chains. The sequence flanking the RING finger in ROC1 did not contribute to UBCH5c activation, but was required for binding with CUL1. We demonstrated that all cullins, through their binding with ROC proteins, constituted active ubiquitin ligases, suggesting the existence in vivo of a large number of cullin-RING ubiquitin ligases. These results are consistent with the notion that the RING finger domains allosterically activate E2. We suggest that RING-E2, rather than cullin-RING, constitutes the catalytic core of the ubiquitin ligase and that one major function of the cullin subunit is to assemble the RING-E2 catalytic core and substrates together.  相似文献   

15.
16.
The RING domain ubiquitin E3 ligase MDM2 is a key regulator of p53 degradation and a mediator of signals that stabilize p53. The current understanding of the mechanisms by which MDM2 posttranslational modifications and protein binding cause p53 stabilization remains incomplete. Here we present evidence that the MDM2 central acidic region is critical for activating RING domain E3 ligase activity. A 30-amino-acid minimal region of the acidic domain binds to the RING domain through intramolecular interactions and stimulates the catalytic function of the RING domain in promoting ubiquitin release from charged E2. The minimal activation sequence is also the binding site for the ARF tumor suppressor, which inhibits ubiquitination of p53. The acidic domain-RING domain intramolecular interaction is modulated by ATM-mediated phosphorylation near the RING domain or by binding of ARF. These results suggest that MDM2 phosphorylation and association with protein regulators share a mechanism in inhibiting the E3 ligase function and stabilizing p53 and suggest that targeting the MDM2 autoactivation mechanism may be useful for therapeutic modulation of p53 levels.  相似文献   

17.
c-Cbl plays a negative regulatory role in tyrosine kinase signaling by an as yet undefined mechanism. We demonstrate here, using the yeast two-hybrid system and an in vitro binding assay, that the c-Cbl RING finger domain interacts with UbcH7, a ubiquitin-conjugating enzyme (E2). UbcH7 interacted with the wild-type c-Cbl RING finger domain but not with a RING finger domain that lacks the amino acids that are deleted in 70Z-Cbl, an oncogenic mutant of c-Cbl. The in vitro interaction was enhanced by sequences on both the N- and C-terminal sides of the RING finger. In vivo and in vitro experiments revealed that c-Cbl and UbcH7 synergistically promote the ligand-induced ubiquitination of the epidermal growth factor receptor (EGFR). In contrast, 70Z-Cbl markedly reduced the ligand-induced, UbcH7-mediated ubiquitination of the EGFR. MG132, a proteasome inhibitor, significantly prolonged the ligand-induced phosphorylation of both the EGFR and c-Cbl. Thus, c-Cbl plays an essential role in the ligand-induced ubiquitination of the EGFR by a mechanism that involves an interaction of the RING finger domain with UbcH7. This mechanism participates in the down-regulation of tyrosine kinase receptors and loss of this function, as occurs in the naturally occurring 70Z-Cbl isoform, probably contributes to oncogenic transformation.  相似文献   

18.
泛素激活酶(E1)、泛素耦联酶(E2)和泛素连接酶(E3)是蛋白质泛素化修饰的关键酶。在真核基因组上有大量基因编码这些泛素化相关的酶类或蛋白。检测这些泛素化修饰酶及其底物蛋白的生化特性和特异性是分析其生物学功能的重要内容。该文提供了一种简便快速检测体外泛素化反应的方法, 不仅可通过检测对DTT敏感的硫酯键的形成来判断E2的活性、检测E3的体外泛素化活性, 而且可以检测E2-E3和E3-底物的特异性。所用蛋白主要来源于拟南芥(Arabidopsis thaliana), 包括分属于绝大多数E2亚家族的成员, 可用于不同RING类型E3的活性检测。该方法不仅可以采用多种E2进行E3活性分析, 而且可以分析不同组合的E2-RING E3、RING E3-底物的泛素化活性等, 亦可应用于真核生物蛋白质尤其是植物蛋白的体外泛素化活性分析。  相似文献   

19.
The E3 ubiquitin ligase RING1B plays an important role in Polycomb-mediated gene silencing by monoubiquitinating histone H2A. Both the activity and stability of RING1B are controlled by ubiquitination in two distinct manners. Self ubiquitination of RING1B generates K6, K27 and K48-based mixed polyubiquitin chain, and is required for its activity as a ligase. On the other hand, its proteasomal degradation is mediated by another ligase; E6-AP catalyzes the formation of K48-based chains. Since these two modes of ubiquitination target the same lysine residues and are therefore mutually exclusive, an important mode of regulation of RING1B should be at the level of deubiquitination. Here we identify USP7 as a deubiquitinating enzyme that regulates the ubiquitination state of RING1B. RING1B interacts with USP7, which is mediated in part by its RING domain. In addition, USP7 was found in a complex with other Polycomb proteins, suggesting a broad role in regulating these complexes. Although, USP7 directly and specifically deubiquitinates RING1B in vitro and in vivo, it does not discriminate between the activating and proteolysis-targeting modes of ubiquitination, and therefore has a stabilizing effect on RING1B.  相似文献   

20.
RING‐in‐between‐RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub‐conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT‐type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING‐type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub‐binding site on HHARI RING2 important for its recruitment to RING1‐bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号