首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In East Africa, epidemics of Rift Valley fever (RVF) occur in cycles of 5–15 years following unusually high rainfall. RVF transmission during inter-epidemic periods (IEP) generally passes undetected in absence of surveillance in mammalian hosts and vectors. We studied IEP transmission of RVF and evaluated the demographic, behavioural, occupational and spatial determinants of past RVF infection.

Methodology

Between March and August 2012 we collected blood samples, and administered a risk factor questionnaire among 606 inhabitants of 6 villages in the seasonally inundated Kilombero Valley, Tanzania. ELISA tests were used to detect RVFV IgM and IgG antibodies in serum samples. Risk factors were examined by mixed effects logistic regression.

Findings

RVF virus IgM antibodies, indicating recent RVFV acquisition, were detected in 16 participants, representing 2.6% overall and in 22.5% of inhibition ELISA positives (n = 71). Four of 16 (25.0%) IgM positives and 11/71 (15.5%) of individuals with inhibition ELISA sero-positivity reported they had had no previous contact with host animals. Sero-positivity on inhibition ELISA was 11.7% (95% CI 9.2–14.5) and risk was elevated with age (odds ratio (OR) 1.03 per year; 95% CI 1.01–1.04), among milkers (OR 2.19; 95% CI 1.23–3.91), and individuals eating raw meat (OR 4.17; 95% CI 1.18–14.66). Households keeping livestock had a higher probability of having members with evidence of past infection (OR = 3.04, 95% CI = 1.42–6.48) than those that do not keep livestock.

Conclusion

There is inter-epidemic acquisition of RVFV in Kilombero Valley inhabitants. In the wake of declining malaria incidence, these findings underscore the need for clinicians to consider RVF in the differential diagnosis for febrile illnesses. Several types of direct contact with livestock are important risk factors for past infection with RVFV in this study’s population. However, at least part of RVFV transmission appears to have occurred through bites of infected mosquitoes.  相似文献   

2.
Since the first isolation of Rift Valley fever virus (RVFV) in the 1930s, there have been multiple epizootics and epidemics in animals and humans in sub-Saharan Africa. Prospective climate-based models have recently been developed that flag areas at risk of RVFV transmission in endemic regions based on key environmental indicators that precede Rift Valley fever (RVF) epizootics and epidemics. Although the timing and locations of human case data from the 2006–2007 RVF outbreak in Kenya have been compared to risk zones flagged by the model, seroprevalence of RVF antibodies in wildlife has not yet been analyzed in light of temporal and spatial predictions of RVF activity. Primarily wild ungulate serum samples from periods before, during, and after the 2006–2007 RVF epizootic were analyzed for the presence of RVFV IgM and/or IgG antibody. Results show an increase in RVF seropositivity from samples collected in 2007 (31.8%), compared to antibody prevalence observed from 2000–2006 (3.3%). After the epizootic, average RVF seropositivity diminished to 5% in samples collected from 2008–2009. Overlaying maps of modeled RVF risk assessments with sampling locations indicated positive RVF serology in several species of wild ungulate in or near areas flagged as being at risk for RVF. Our results establish the need to continue and expand sero-surveillance of wildlife species Kenya and elsewhere in the Horn of Africa to further calibrate and improve the RVF risk model, and better understand the dynamics of RVFV transmission.  相似文献   

3.
BackgroundRift Valley fever (RVF) is a vector-borne disease affecting ruminants and humans. Madagascar was heavily affected by RVF in 2008–2009, with evidence of a large and heterogeneous spread of the disease. The identification of at-risk environments is essential to optimize the available resources by targeting RVF surveillance in Madagascar. Herein, the objectives of our study were: (i) to identify the environmental factors and areas favorable to RVF transmission to both cattle and human and (ii) to identify human behaviors favoring human infections in Malagasy contexts.Conclusions/SignificanceOur integrated approach analyzing environmental, cattle and human datasets allow us to bring new insight on RVF transmission patterns in Madagascar. The association between cattle seroprevalence, humid environments and high cattle density suggests that concomitant vectorial and direct transmissions are critical to maintain RVF enzootic transmission. Additionally, in the at-risk humid environment of the western, north-western and the eastern-coast areas, suitable to Culex and Anopheles mosquitoes, vectorial transmission probably occurs in both cattle and human. The relative contribution of vectorial or direct transmissions could be further assessed by mathematic modelling.  相似文献   

4.
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis which affects humans and a wide range of domestic and wild ruminants. The large spread of RVF in Africa and its potential to emerge beyond its geographic range requires the development of surveillance strategies to promptly detect the disease outbreaks in order to implement efficient control measures, which could prevent the widespread of the virus to humans. The Animal Health Mediterranean Network (REMESA) linking some Northern African countries as Algeria, Egypt, Libya, Mauritania, Morocco, Tunisia with Southern European ones as France, Italy, Portugal and Spain aims at improving the animal health in the Western Mediterranean Region since 2009. In this context, a first assessment of the diagnostic capacities of the laboratories involved in the RVF surveillance was performed. The first proficiency testing (external quality assessment—EQA) for the detection of the viral genome and antibodies of RVF virus (RVFV) was carried out from October 2013 to February 2014. Ten laboratories participated from 6 different countries (4 from North Africa and 2 from Europe). Six laboratories participated in the ring trial for both viral RNA and antibodies detection methods, while four laboratories participated exclusively in the antibodies detection ring trial. For the EQA targeting the viral RNA detection methods 5 out of 6 laboratories reported 100% of correct results. One laboratory misidentified 2 positive samples as negative and 3 positive samples as doubtful indicating a need for corrective actions. For the EQA targeting IgG and IgM antibodies methods 9 out of the 10 laboratories reported 100% of correct results, whilst one laboratory reported all correct results except one false-positive. These two ring trials provide evidence that most of the participating laboratories are capable to detect RVF antibodies and viral RNA thus recognizing RVF infection in affected ruminants with the diagnostic methods currently available.  相似文献   

5.

Background

In recent years, evidence of Rift Valley fever (RVF) transmission during inter-epidemic periods in parts of Africa has increasingly been reported. The inter-epidemic transmissions generally pass undetected where there is no surveillance in the livestock or human populations. We studied the presence of and the determinants for inter-epidemic RVF transmission in an area experiencing annual flooding in southern Tanzania.

Methodology

A cross-sectional sero-survey was conducted in randomly selected cattle, sheep and goats in the Kilombero river valley from May to August 2011, approximately four years after the 2006/07 RVF outbreak in Tanzania. The exposure status to RVF virus (RVFV) was determined using two commercial ELISA kits, detecting IgM and IgG antibodies in serum. Information about determinants was obtained through structured interviews with herd owners.

Findings

An overall seroprevalence of 11.3% (n = 1680) was recorded; 5.5% in animals born after the 2006/07 RVF outbreak and 22.7% in animals present during the outbreak. There was a linear increase in prevalence in the post-epidemic annual cohorts. Nine inhibition-ELISA positive samples were also positive for RVFV IgM antibodies indicating a recent infection. The spatial distribution of seroprevalence exhibited a few hotspots. The sex difference in seroprevalence in animals born after the previous epidemic was not significant (6.1% vs. 4.6% for females and males respectively, p = 0.158) whereas it was significant in animals present during the outbreak (26.0% vs. 7.8% for females and males respectively, p<0.001). Animals living >15 km from the flood plain were more likely to have antibodies than those living <5 km (OR 1.92; 95% CI 1.04–3.56). Species, breed, herd composition, grazing practices and altitude were not associated with seropositivity.

Conclusion

These findings indicate post-epidemic transmission of RVFV in the study area. The linear increase in seroprevalence in the post-epidemic annual cohorts implies a constant exposure and presence of active foci transmission preceding the survey.  相似文献   

6.
Gambiense human African trypanosomiasis (gHAT) has been targeted for elimination of transmission (EoT) to humans by 2030. Whilst this ambitious goal is rapidly approaching, there remain fundamental questions about the presence of non-human animal transmission cycles and their potential role in slowing progress towards, or even preventing, EoT. In this study we focus on the country with the most gHAT disease burden, the Democratic Republic of Congo (DRC), and use mathematical modelling to assess whether animals may contribute to transmission in specific regions, and if so, how their presence could impact the likelihood and timing of EoT.By fitting two model variants—one with, and one without animal transmission—to the human case data from 2000–2016 we estimate model parameters for 158 endemic health zones of the DRC. We evaluate the statistical support for each model variant in each health zone and infer the contribution of animals to overall transmission and how this could impact predicted time to EoT.We conclude that there are 24/158 health zones where there is substantial to decisive statistical support for some animal transmission. However—even in these regions—we estimate that animals would be extremely unlikely to maintain transmission on their own. Animal transmission could hamper progress towards EoT in some settings, with projections under continuing interventions indicating that the number of health zones expected to achieve EoT by 2030 reduces from 68/158 to 61/158 if animal transmission is included in the model. With supplementary vector control (at a modest 60% tsetse reduction) added to medical screening and treatment interventions, the predicted number of health zones meeting the goal increases to 147/158 for the model including animal transmission. This is due to the impact of vector reduction on transmission to and from all hosts.  相似文献   

7.
Uganda established a domestic Viral Hemorrhagic Fever (VHF) testing capacity in 2010 in response to the increasing occurrence of filovirus outbreaks. In July 2018, the neighboring Democratic Republic of Congo (DRC) experienced its 10th Ebola Virus Disease (EVD) outbreak and for the duration of the outbreak, the Ugandan Ministry of Health (MOH) initiated a national EVD preparedness stance. Almost one year later, on 10th June 2019, three family members who had contracted EVD in the DRC crossed into Uganda to seek medical treatment.Samples were collected from all the suspected cases using internationally established biosafety protocols and submitted for VHF diagnostic testing at Uganda Virus Research Institute. All samples were initially tested by RT-PCR for ebolaviruses, marburgviruses, Rift Valley fever (RVF) virus and Crimean-Congo hemorrhagic fever (CCHF) virus. Four people were identified as being positive for Zaire ebolavirus, marking the first report of Zaire ebolavirus in Uganda. In-country Next Generation Sequencing (NGS) and phylogenetic analysis was performed for the first time in Uganda, confirming the outbreak as imported from DRC at two different time point from different clades. This rapid response by the MoH, UVRI and partners led to the control of the outbreak and prevention of secondary virus transmission.  相似文献   

8.
Rift Valley fever (RVF) is a vector-borne zoonotic disease that causes high morbidity and mortality in ruminants. In 2008–2009, a RVF outbreak affected the whole Madagascar island, including the Anjozorobe district located in Madagascar highlands. An entomological survey showed the absence of Aedes among the potential RVF virus (RVFV) vector species identified in this area, and an overall low abundance of mosquitoes due to unfavorable climatic conditions during winter. No serological nor virological sign of infection was observed in wild terrestrial mammals of the area, suggesting an absence of wild RVF virus (RVFV) reservoir. However, a three years serological and virological follow-up in cattle showed a recurrent RVFV circulation. The objective of this study was to understand the key determinants of this unexpected recurrent transmission. To achieve this goal, a spatial deterministic discrete-time metapopulation model combined with cattle trade network was designed and parameterized to reproduce the local conditions using observational data collected in the area. Three scenarios that could explain the RVFV recurrent circulation in the area were analyzed: (i) RVFV overwintering thanks to a direct transmission between cattle when viraemic cows calve, vectors being absent during the winter, (ii) a low level vector-based circulation during winter thanks to a residual vector population, without direct transmission between cattle, (iii) combination of both above mentioned mechanisms. Multi-model inference methods resulted in a model incorporating both a low level RVFV winter vector-borne transmission and a direct transmission between animals when viraemic cows calve. Predictions satisfactorily reproduced field observations, 84% of cattle infections being attributed to vector-borne transmission, and 16% to direct transmission. These results appeared robust according to the sensitivity analysis. Interweaving between agricultural works in rice fields, seasonality of vector proliferation, and cattle exchange practices could be a key element for understanding RVFV circulation in this area of Madagascar highlands.  相似文献   

9.
Rift Valley fever (RVF) is a viral disease of animals and humans and a global public health concern due to its ecological plasticity, adaptivity, and potential for spread to countries with a temperate climate. In many places, outbreaks are episodic and linked to climatic, hydrologic, and socioeconomic factors. Although outbreaks of RVF have occurred in Egypt since 1977, attempts to identify risk factors have been limited. Using a statistical learning approach (lasso‐regularized generalized linear model), we tested the hypotheses that outbreaks in Egypt are linked to (1) River Nile conditions that create a mosquito vector habitat, (2) entomologic conditions favorable to transmission, (3) socio‐economic factors (Islamic festival of Greater Bairam), and (4) recent history of transmission activity. Evidence was found for effects of rainfall and river discharge and recent history of transmission activity. There was no evidence for an effect of Greater Bairam. The model predicted RVF activity correctly in 351 of 358 months (98.0%). This is the first study to statistically identify risk factors for RVF outbreaks in a region of unstable transmission.  相似文献   

10.
11.
Health care workers (HCWs) in Taiwan have heavy, stressful workloads, are on-call, and have rotating nightshifts, all of which might contribute to peptic ulcer disease (PUD). We wanted to evaluate the PUD risk in HCWs, which is not clear. Using Taiwan’s National Health Insurance Research Database, we identified 50,226 physicians, 122,357 nurses, 20,677 pharmacists, and 25,059 other HCWs (dieticians, technicians, rehabilitation therapists, and social workers) as the study cohort, and randomly selected an identical number of non-HCW patients (i.e., general population) as the comparison cohort. Conditional logistical regression analysis was used to compare the PUD risk between them. Subgroup analysis for physician specialties was also done. Nurses and other HCWs had a significantly higher PUD risk than did the general population (odds ratio [OR]: 1.477; 95% confidence interval [CI]: 1.433–1.521 and OR: 1.328; 95% CI: 1.245–1.418, respectively); pharmacists had a lower risk (OR: 0.884; 95% CI: 0.828–0.945); physicians had a nonsignificantly different risk (OR: 1.029; 95% CI: 0.987–1.072). In the physician specialty subgroup analysis, internal medicine, surgery, Ob/Gyn, and family medicine specialists had a higher PUD risk than other physicians (OR: 1.579; 95% CI: 1.441–1.731, OR: 1.734; 95% CI: 1.565–1.922, OR: 1.336; 95% CI: 1.151–1.550, and OR: 1.615; 95% CI: 1.425–1.831, respectively). In contrast, emergency physicians had a lower risk (OR: 0.544; 95% CI: 0.359–0.822). Heavy workloads, long working hours, workplace stress, rotating nightshifts, and coping skills may explain our epidemiological findings of higher risks for PUD in some HCWs, which might help us improve our health policies for HCWs.  相似文献   

12.

Background

Proportional mortality ratio data indicate that healthcare workers (HCWs) have an elevated tuberculosis (TB) mortality. Whether this is caused by an increased TB incidence, a worse TB treatment outcome, or a combination of effects, remains unclear. To elucidate the hazard components of occupational TB, we assessed TB incidence and TB treatment outcome among HCWs in Taiwan.

Methods

We compared the incidence of active TB among HCWs at a major medical center in Taiwan with that of Taiwan general population in 2004–2012. We also compared the TB treatment outcome of HCWs with that of age/sex-matched non-HCW patients treated at the same hospital, as well as that of nationally registered TB patients.

Results

The standardized TB incidence ratio of the HCWs was 1.9 (95% confidence interval [CI]: 1.2–2.9), compared with the general population. HCWs with pulmonary TB (n = 30) were less likely to have underlying diseases, delay in diagnosis, delay in treatment, or side effects of treatment, compared with age/sex-matched non-HCW TB patients (n = 120) (all Ps<0.05). The TB treatment outcome of HCWs was significantly better than that of non-HCW patients (TB-related mortality: 0.0% vs. 5.8%, P = 0.008, Mantel-Haenszel test). The standardized TB-related mortality rate was 1.08% [95% CI: 0.96% - 1.20%] for all of the nationally registered TB patients in Taiwan.

Conclusions

HCWs are at increased risk of active TB, compared with general population. To mitigate this occupational hazard, more efforts need to be directed towards the prevention of nosocomial TB transmission. Healthy worker effect, more rapid diagnosis, and less delay in treatment contribute to a lower TB-related mortality in HCWs.  相似文献   

13.
In the arms race between plants and viruses, two frontiers have been utilized for decades to combat viral infections in agriculture. First, many pathogenic viruses are excluded from plant meristems, which allows the regeneration of virus-free plant material by tissue culture. Second, vertical transmission of viruses to the host progeny is often inefficient, thereby reducing the danger of viral transmission through seeds. Numerous reports point to the existence of tightly linked meristematic and transgenerational antiviral barriers that remain poorly understood. In this review, we summarize the current understanding of the molecular mechanisms that exclude viruses from plant stem cells and progeny. We also discuss the evidence connecting viral invasion of meristematic cells and the ability of plants to recover from acute infections. Research spanning decades performed on a variety of virus/host combinations has made clear that, beside morphological barriers, RNA interference (RNAi) plays a crucial role in preventing—or allowing—meristem invasion and vertical transmission. How a virus interacts with plant RNAi pathways in the meristem has profound effects on its symptomatology, persistence, replication rates, and, ultimately, entry into the host progeny.

We review what is known about the biological mechanisms regulating virus exclusion from—or invasion of—plant host meristems and progeny, including possible consequences and implications of these phenomena.  相似文献   

14.

Background

To-date, Rift Valley fever (RVF) outbreaks have occurred in 38 of the 69 administrative districts in Kenya. Using surveillance records collected between 1951 and 2007, we determined the risk of exposure and outcome of an RVF outbreak, examined the ecological and climatic factors associated with the outbreaks, and used these data to develop an RVF risk map for Kenya.

Methods

Exposure to RVF was evaluated as the proportion of the total outbreak years that each district was involved in prior epizootics, whereas risk of outcome was assessed as severity of observed disease in humans and animals for each district. A probability-impact weighted score (1 to 9) of the combined exposure and outcome risks was used to classify a district as high (score ≥ 5) or medium (score ≥2 - <5) risk, a classification that was subsequently subjected to expert group analysis for final risk level determination at the division levels (total = 391 divisions). Divisions that never reported RVF disease (score < 2) were classified as low risk. Using data from the 2006/07 RVF outbreak, the predictive risk factors for an RVF outbreak were identified. The predictive probabilities from the model were further used to develop an RVF risk map for Kenya.

Results

The final output was a RVF risk map that classified 101 of 391 divisions (26%) located in 21 districts as high risk, and 100 of 391 divisions (26%) located in 35 districts as medium risk and 190 divisions (48%) as low risk, including all 97 divisions in Nyanza and Western provinces. The risk of RVF was positively associated with Normalized Difference Vegetation Index (NDVI), low altitude below 1000m and high precipitation in areas with solonertz, luvisols and vertisols soil types (p <0.05).

Conclusion

RVF risk map serves as an important tool for developing and deploying prevention and control measures against the disease.  相似文献   

15.
16.
BackgroundLassa fever (LF) often presents clinically as undifferentiated febrile illness. Lassa Fever cases in Sierra Leone have been falling since the 2014–2016 Ebola epidemic. Data from other LF endemic countries suggest that this is not a true reflection of local epidemiological decline, but rather a function of either health seeking behaviour or the health/referral system. In Sierra Leone, many other diseases present with a similar early clinical picture, including COVID-19 and Marburg Disease (which has recently emerged in neighbouring Guinea). This empirical study explores the implementation of health system processes associated with International Health Regulations (IHR) requirements for early detection and timely and effective responses to the spread of febrile disease, through the case study of LF in Sierra Leone.Methodology/Principal findingsThis study used a qualitative approach to analyse local policy and guidance documents, key informant interviews with policy and practice actors, and focus group discussions and in-depth interviews with health care workers (HCWs) and community health workers (CHWs) in Kenema District to examine the ways in which undifferentiated fever surveillance and response policies and processes were implemented in the post-Ebola period. Multiple challenges were identified, including: issues with the LF case definition, approaches to differential diagnosis, specimen transport and the provision of results, and ownership of laboratory data. These issues lead to delays in diagnosis, and potentially worse outcomes for individual patients, as well as affecting the system’s ability to respond to outbreak-prone disease.Conclusions/SignificanceIdentification of ways to improve the system requires balancing vertical disease surveillance programmes against other population health needs. Therefore, health system challenges to early identification of LF specifically have implications for the effectiveness of the wider Integrated Disease Surveillance and Response (IDSR) system in Sierra Leone more generally. Sentinel surveillance or improved surveillance at maternity facilities would help improve viral haemorrhagic fever (VHF) surveillance, as well as knowledge of LF epidemiology. Strengthening surveillance for vertical disease programmes, if correctly targeted, could have downstream benefits for COVID-19 surveillance and response as well as the wider health system—and therefore patient outcomes more generally.  相似文献   

17.
In systems biology, questions concerning the molecular and cellular makeup of an organism are of utmost importance, especially when trying to understand how unreliable components—like genetic circuits, biochemical cascades, and ion channels, among others—enable reliable and adaptive behaviour. The repertoire and speed of biological computations are limited by thermodynamic or metabolic constraints: an example can be found in neurons, where fluctuations in biophysical states limit the information they can encode—with almost 20–60% of the total energy allocated for the brain used for signalling purposes, either via action potentials or by synaptic transmission. Here, we consider the imperatives for neurons to optimise computational and metabolic efficiency, wherein benefits and costs trade-off against each other in the context of self-organised and adaptive behaviour. In particular, we try to link information theoretic (variational) and thermodynamic (Helmholtz) free-energy formulations of neuronal processing and show how they are related in a fundamental way through a complexity minimisation lemma.  相似文献   

18.
Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held).  相似文献   

19.
BackgroundNosocomial spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been widely reported, but the transmission pathways among patients and healthcare workers (HCWs) are unclear. Identifying the risk factors and drivers for these nosocomial transmissions is critical for infection prevention and control interventions. The main aim of our study was to quantify the relative importance of different transmission pathways of SARS-CoV-2 in the hospital setting.Methods and findingsThis is an observational cohort study using data from 4 teaching hospitals in Oxfordshire, United Kingdom, from January to October 2020. Associations between infectious SARS-CoV-2 individuals and infection risk were quantified using logistic, generalised additive and linear mixed models. Cases were classified as community- or hospital-acquired using likely incubation periods of 3 to 7 days. Of 66,184 patients who were hospitalised during the study period, 920 had a positive SARS-CoV-2 PCR test within the same period (1.4%). The mean age was 67.9 (±20.7) years, 49.2% were females, and 68.5% were from the white ethnic group. Out of these, 571 patients had their first positive PCR tests while hospitalised (62.1%), and 97 of these occurred at least 7 days after admission (10.5%). Among the 5,596 HCWs, 615 (11.0%) tested positive during the study period using PCR or serological tests. The mean age was 39.5 (±11.1) years, 78.9% were females, and 49.8% were nurses. For susceptible patients, 1 day in the same ward with another patient with hospital-acquired SARS-CoV-2 was associated with an additional 7.5 infections per 1,000 susceptible patients (95% credible interval (CrI) 5.5 to 9.5/1,000 susceptible patients/day) per day. Exposure to an infectious patient with community-acquired Coronavirus Disease 2019 (COVID-19) or to an infectious HCW was associated with substantially lower infection risks (2.0/1,000 susceptible patients/day, 95% CrI 1.6 to 2.2). As for HCW infections, exposure to an infectious patient with hospital-acquired SARS-CoV-2 or to an infectious HCW were both associated with an additional 0.8 infection per 1,000 susceptible HCWs per day (95% CrI 0.3 to 1.6 and 0.6 to 1.0, respectively). Exposure to an infectious patient with community-acquired SARS-CoV-2 was associated with less than half this risk (0.2/1,000 susceptible HCWs/day, 95% CrI 0.2 to 0.2). These assumptions were tested in sensitivity analysis, which showed broadly similar results. The main limitations were that the symptom onset dates and HCW absence days were not available.ConclusionsIn this study, we observed that exposure to patients with hospital-acquired SARS-CoV-2 is associated with a substantial infection risk to both HCWs and other hospitalised patients. Infection control measures to limit nosocomial transmission must be optimised to protect both staff and patients from SARS-CoV-2 infection.

In a cohort study, Mo Yin and colleagues investigate transmission of community- and hospital-acquired SARS-CoV-2 in hospital settings in the UK.  相似文献   

20.
Rift Valley fever (RVF) is a vector-borne viral disease of major animal and public health importance. In 2018–19, it caused an epidemic in both livestock and human populations of the island of Mayotte. Using Bayesian modelling approaches, we assessed the spatio-temporal pattern of RVF virus (RVFV) infection in livestock and human populations across the island, and factors shaping it. First, we assessed if (i) livestock movements, (ii) spatial proximity from communes with infected animals, and (iii) livestock density were associated with the temporal sequence of RVFV introduction into Mayotte communes’ livestock populations. Second, we assessed whether the rate of human infection was associated with (a) spatial proximity from and (b) livestock density of communes with infected animals. Our analyses showed that the temporal sequence of RVFV introduction into communes’ livestock populations was associated with livestock movements and spatial proximity from communes with infected animals, with livestock movements being associated with the best model fit. Moreover, the pattern of human cases was associated with their spatial proximity from communes with infected animals, with the risk of human infection sharply increasing if livestock in the same or close communes were infected. This study highlights the importance of understanding livestock movement networks in informing the design of risk-based RVF surveillance programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号