首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Thirty-two honeybee (Apis mellifera) colonies were studied in order to detect and measure potential in vivo effects of neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Honeybee colonies were randomly split on four different agricultural cornfield areas located near Quebec City, Canada. Two locations contained cornfields treated with a seed-coated systemic neonicotinoid insecticide while the two others were organic cornfields used as control treatments. Hives were extensively monitored for their performance and health traits over a period of two years. Honeybee viruses (brood queen cell virus BQCV, deformed wing virus DWV, and Israeli acute paralysis virus IAPV) and the brain specific expression of a biomarker of host physiological stress, the Acetylcholinesterase gene AChE, were investigated using RT-qPCR. Liquid chromatography-mass spectrometry (LC-MS) was performed to detect pesticide residues in adult bees, honey, pollen, and corn flowers collected from the studied hives in each location. In addition, general hive conditions were assessed by monitoring colony weight and brood development. Neonicotinoids were only identified in corn flowers at low concentrations. However, honeybee colonies located in neonicotinoid treated cornfields expressed significantly higher pathogen infection than those located in untreated cornfields. AChE levels showed elevated levels among honeybees that collected corn pollen from treated fields. Positive correlations were recorded between pathogens and the treated locations. Our data suggests that neonicotinoids indirectly weaken honeybee health by inducing physiological stress and increasing pathogen loads.  相似文献   

2.
The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies.  相似文献   

3.
Insect pollination improves the yield and quality of many crops, yet there is increasing evidence of insufficient insect pollinators limiting crop production. Effective Integrated Crop Pollination (ICP) involves adaptable, targeted and cost-effective management of crop pollination and encourages the use of both wild and managed pollinators where appropriate. In this study we investigate how the addition of honeybee hives affects the community of insects visiting oilseed rape, and if hive number and location affect pollinator foraging and oilseed rape pollination in order to provide evidence for effective ICP. We found that introducing hives increased overall flower visitor numbers and altered the pollinator community, which became dominated by honeybees. Furthermore a greater number of hives did not increase bee numbers significantly but did result in honeybees foraging further into fields. The timing of surveys and proximity to the field edge influenced different pollinators in different ways and represents an example of spatial and temporal complementarity. For example dipteran flower visitor numbers declined away from the field edge whereas honeybees peaked at intermediate distances into the field. Furthermore, no significant effects of survey round on wild bees overall was observed but honeybee numbers were relatively lower during peak flowering and dipteran abundance was greater in later survey rounds. Thus combining diverse wild pollinators and managed species for crop pollination buffers spatial and temporal variation in flower visitation. However we found no effect of insect pollination on seed set or yield of oilseed rape in our trial, highlighting the critical need to understand crop demand for insect pollination before investments are made in managing pollination services.  相似文献   

4.
新型杀虫蛋白基因crylAh基因是中国农业科学院植物保护研究所从Bt菌株BT8中鉴定克隆的,其编码蛋白对鳞翅目害虫具有强毒力,尤其对亚洲玉米螟Ostriniafurnacalis(Guen6e)的毒力强于目前使用的crylA类基因。转crylAh基因抗虫玉米具有很好的应用前景。花粉是蜜蜂重要的食物来源,蜜蜂是转基因植物安全性评价的关键测试生物。因此,开展转crylAh基因玉米对蜜蜂的安全性研究很有必要。给意大利蜜蜂ApismelliferoligusticoSpirola蜂群中4-6日龄幼虫饲喂转基因玉米花粉、常规玉米花粉、杂花粉,哺育蜂饲喂为对照。转基因玉米花粉对意大利蜜蜂封盖率、出房率和发育历期没有显著影响。表明转crylAh基因玉米花粉对意大利蜜蜂幼虫的存活和发育没有不良影响。  相似文献   

5.
吡虫啉对意大利蜜蜂脑乙酰胆碱受体分布的影响   总被引:1,自引:0,他引:1  
周婷  宋怀磊  王强  代平礼  吴艳艳  孙继虎 《昆虫学报》2013,56(11):1258-1266
蜜蜂是自然界主要的授粉昆虫; 新烟碱类杀虫剂(neonicotinoid insecticide)通过结合害虫体内乙酰胆碱受体(nAChR)使害虫致死, 是目前广泛用于田间害虫防控的杀虫剂。本研究以意大利蜜蜂Apis mellifera ligustica和新烟碱类杀虫剂的代表品种吡虫啉为材料, 应用免疫组织化学的方法, 研究了正常成年蜜蜂脑内蘑菇体及视叶nAChR-α7的表达和分布; 分析了亚致死剂量新烟碱类杀虫剂吡虫啉对nAChR-α7表达和分布的影响。结果表明, nAChR-α7在正常蜜蜂脑蘑菇体和视叶中均可检测到, 在蘑菇体中分布相对较少, 但在视叶分布丰富。吡虫啉对nAChR-α7在视叶的表达和分布有显著抑制作用, 但对蘑菇体nAChR-α7的表达没有显著影响。结果提示, 新烟碱类杀虫剂吡虫啉除了文献报道的抑制nAChR的表达外, 还能抑制nAChR-α7的表达量, 这是新烟碱类杀虫剂作用机制的新发现。  相似文献   

6.
Maternal immune experience acquired during pathogen exposure and passed on to progeny to enhance resistance to infection is called trans-generational immune priming (TgIP). In eusocial insects like honeybees, TgIP would result in a significant improvement of health at individual and colony level. Demonstrated in invertebrates other than honeybees, TgIP has not yet been fully elucidated in terms of intensity and molecular mechanisms underlying this response. Here, we immune-stimulated honeybee queens with Paenibacillus larvae (Pl), a spore-forming bacterium causing American Foulbrood, the most deadly bee brood disease worldwide. Subsequently, offspring of stimulated queens were exposed to spores of Pl and mortality rates were measured to evaluate maternal transfer of immunity. Our data substantiate the existence of TgIP effects in honeybees by direct evaluation of offspring resistance to bacterial infection. A further aspect of this study was to investigate a potential correlation between immune priming responses and prohaemocytes–haemocyte differentiation processes in larvae. The results point out that a priming effect triggers differentiation of prohaemocytes to haemocytes. However, the mechanisms underlying TgIP responses are still elusive and require future investigation.  相似文献   

7.
Natural and within-farmland biodiversity enhances crop productivity   总被引:1,自引:0,他引:1  
Ongoing expansion of large-scale agriculture critically threatens natural habitats and the pollination services they offer. Creating patches with high plant diversity within farmland is commonly suggested as a measure to benefit pollinators. However, farmers rarely adopt such practice, instead removing naturally occurring plants (weeds). By combining pollinator exclusion experiments with analysis of honeybee behaviour and flower-visitation webs, we found that the presence of weeds allowed pollinators to persist within sunflower fields, maximizing the benefits of the remaining patches of natural habitat to productivity of this large-scale crop. Weed diversity increased flower visitor diversity, hence ameliorating the measured negative effects of isolation from natural habitat. Although honeybees were the most abundant visitors, diversity of flower visitors enhanced honeybee movement, being the main factor influencing productivity. Conservation of natural patches combined with promoting flowering plants within crops can maximize productivity and, therefore, reduce the need for cropland expansion, contributing towards sustainable agriculture.  相似文献   

8.
Varroa destructor (Vd) is a honeybee ectoparasite. Its original host is the Asian honeybee, Apis cerana, but it has also become a severe, global threat to the European honeybee, Apis mellifera. Previous studies have shown that Varroa can mimic a host''s cuticular hydrocarbons (HC), enabling the parasite to escape the hygienic behaviour of the host honeybees. By transferring mites between the two honeybee species, we further demonstrate that Vd is able to mimic the cuticular HC of a novel host species when artificially transferred to this new host. Mites originally from A. cerana are more efficient than mites from A. mellifera in mimicking HC of both A. cerana and A. mellifera. This remarkable adaptability may explain their relatively recent host-shift from A. cerana to A. mellifera.  相似文献   

9.
Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse.  相似文献   

10.
Global pollinators, like honeybees, are declining in abundance and diversity, which can adversely affect natural ecosystems and agriculture. Therefore, we tested the current hypotheses describing honeybee losses as a multifactorial syndrome, by investigating integrative effects of an infectious organism and an insecticide on honeybee health. We demonstrated that the interaction between the microsporidia Nosema and a neonicotinoid (imidacloprid) significantly weakened honeybees. In the short term, the combination of both agents caused the highest individual mortality rates and energetic stress. By quantifying the strength of immunity at both the individual and social levels, we showed that neither the haemocyte number nor the phenoloxidase activity of individuals was affected by the different treatments. However, the activity of glucose oxidase, enabling bees to sterilize colony and brood food, was significantly decreased only by the combination of both factors compared with control, Nosema or imidacloprid groups, suggesting a synergistic interaction and in the long term a higher susceptibility of the colony to pathogens. This provides the first evidences that interaction between an infectious organism and a chemical can also threaten pollinators, interactions that are widely used to eliminate insect pests in integrative pest management.  相似文献   

11.
郑火青  胡福良  朱威 《昆虫知识》2006,43(5):599-602
转基因动物的科研价值和商业价值促进了转基因技术的不断发展和在各个领域的深入应用。蜜蜂是有着悠久饲养历史的经济昆虫和在基础理论研究领域有重大应用价值的模式动物,但其转基因研究却相对落后。雌性蜂的级型分化和工蜂清洁巢房行为增加了蜜蜂转基因的难度,精子介导转基因配套以人工授精技术及蜜蜂卵或幼虫的转基因操作与蜜蜂人工孵育技术结合是目前蜜蜂转基因的较好途径。文章综述蜜蜂转基因的研究进展,并讨论蜜蜂转基因所面临的特殊性及其研究途径。  相似文献   

12.
Apis mellifera capensis is unique among honeybees in that unmated workers can produce pseudo-clonal female offspring via thelytokous parthenogenesis. Workers use this ability to compete among themselves and with their queen to be the mother of new queens. Males could therefore enhance their reproductive success by imprinting genes that enhance fertility in their daughter workers. This possibility sets the scene for intragenomic conflict between queens and drones over worker reproductive traits. Here, we show a strong parent-of-origin effect for ovary size (number of ovarioles) in reciprocal crosses between two honeybee subspecies, A. m. capensis and Apis mellifera scutellata. In this cross, workers with an A. m. capensis father had 30% more ovarioles than genotypically matched workers with an A. m. scutellata father. Other traits we measured (worker weight at emergence and the presence/absence of a spermatheca) are influenced more by rearing conditions than by parent-of-origin effects. Our study is the first to show a strong epigenetic (or, less likely, cytoplasmic maternal) effect for a reproductive trait in the honeybee and suggests that a search for parent-of-origin effects in other social insects may be fruitful.  相似文献   

13.
Outside their natural range, honeybees (Apis mellifera) are known to have detrimental effects on indigenous pollinators through exploitative or interference competition, but little is known about the effect of honeybee farming in areas where honeybees occur naturally. In the Cape Floristic Region of South Africa, where honeybees are indigenous, managed hives potentially elevate the abundance of honeybees far above natural levels, but impacts on other floral resource-dependent species have not been studied. Here we use experimental manipulation of honeybee density to test whether honeybee farming affects nectar-feeding birds. We selected the common sugarbush (Protea repens), utilized by both birds and bees, and analysed the time (before/after) by treatment (control/experiment) interaction to explore changes in bee abundance, nectar availability and bird abundance at three sites. Hive addition increased honeybee abundance in inflorescences of P. repens above expected levels. Despite experimental increase in honeybee numbers, there is no reduction in nectar sugar availability relative to the control areas. Where honeybee density was highest, sugarbird (Promerops cafer) numbers declined relative to expected, but sunbirds (Nectarinidae) were not affected at any of the sites. We conclude that stocking rates of more than one honey bee per P. repens inflorescence have detrimental effects on bird abundance due to interference, rather than resource competition.  相似文献   

14.

Background

Honeybees provide economically and ecologically vital pollination services to crops and wild plants. During the last decade elevated colony losses have been documented in Europe and North America. Despite growing consensus on the involvement of multiple causal factors, the underlying interactions impacting on honeybee health and colony failure are not fully resolved. Parasites and pathogens are among the main candidates, but sublethal exposure to widespread agricultural pesticides may also affect bees.

Methodology/Principal Findings

To investigate effects of sublethal dietary neonicotinoid exposure on honeybee colony performance, a fully crossed experimental design was implemented using 24 colonies, including sister-queens from two different strains, and experimental in-hive pollen feeding with or without environmentally relevant concentrations of thiamethoxam and clothianidin. Honeybee colonies chronically exposed to both neonicotinoids over two brood cycles exhibited decreased performance in the short-term resulting in declining numbers of adult bees (−28%) and brood (−13%), as well as a reduction in honey production (−29%) and pollen collections (−19%), but colonies recovered in the medium-term and overwintered successfully. However, significantly decelerated growth of neonicotinoid-exposed colonies during the following spring was associated with queen failure, revealing previously undocumented long-term impacts of neonicotinoids: queen supersedure was observed for 60% of the neonicotinoid-exposed colonies within a one year period, but not for control colonies. Linked to this, neonicotinoid exposure was significantly associated with a reduced propensity to swarm during the next spring. Both short-term and long-term effects of neonicotinoids on colony performance were significantly influenced by the honeybees’ genetic background.

Conclusions/Significance

Sublethal neonicotinoid exposure did not provoke increased winter losses. Yet, significant detrimental short and long-term impacts on colony performance and queen fate suggest that neonicotinoids may contribute to colony weakening in a complex manner. Further, we highlight the importance of the genetic basis of neonicotinoid susceptibility in honeybees which can vary substantially.  相似文献   

15.
The tiered approach to assessing ecological risk of insect-resistant transgenic crops assumes that lower tier laboratory studies, which expose surrogate non-target organisms to high doses of insecticidal proteins, can detect harmful effects that might be manifested in the field. To test this assumption, we performed meta-analyses comparing results for non-target invertebrates exposed to Bacillus thuringiensis (Bt) Cry proteins in laboratory studies with results derived from independent field studies examining effects on the abundance of non-target invertebrates. For Lepidopteran-active Cry proteins, laboratory studies correctly predicted the reduced field abundance of non-target Lepidoptera. However, laboratory studies incorporating tri-trophic interactions of Bt plants, herbivores and parasitoids were better correlated with the decreased field abundance of parasitoids than were direct-exposure assays. For predators, laboratory tri-trophic studies predicted reduced abundances that were not realized in field studies and thus overestimated ecological risk. Exposure to Coleopteran-active Cry proteins did not significantly reduce the laboratory survival or field abundance of any functional group examined. Our findings support the assumption that laboratory studies of transgenic insecticidal crops show effects that are either consistent with, or more conservative than, those found in field studies, with the important caveat that laboratory studies should explore all ecologically relevant routes of exposure.  相似文献   

16.
Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.  相似文献   

17.
In recent years, populations of honey bees and other pollinators have been reported to be in decline worldwide. A number of stressors have been identified as potential contributing factors, including the extensive prophylactic use of neonicotinoid insecticides, which are highly toxic to bees, in agriculture. While multiple routes of exposure to these systemic insecticides have been documented for honey bees, contamination from puddle water has not been investigated. In this study, we used a multi-residue method based on LC-MS/MS to analyze samples of puddle water taken in the field during the planting of treated corn and one month later. If honey bees were to collect and drink water from these puddles, our results showed that they would be exposed to various agricultural pesticides. All water samples collected from corn fields were contaminated with at least one neonicotinoid compound, although most contained more than one systemic insecticide. Concentrations of neonicotinoids were higher in early spring, indicating that emission and drifting of contaminated dust during sowing raises contamination levels of puddles. Although the overall average acute risk of drinking water from puddles was relatively low, concentrations of neonicotinoids ranged from 0.01 to 63 µg/L and were sufficient to potentially elicit a wide array of sublethal effects in individuals and colony alike. Our results also suggest that risk assessment of honey bee water resources underestimates the foragers'' exposure and consequently miscalculates the risk. In fact, our data shows that honey bees and native pollinators are facing unprecedented cumulative exposure to these insecticides from combined residues in pollen, nectar and water. These findings not only document the impact of this route of exposure for honey bees, they also have implications for the cultivation of a wide variety of crops for which the extensive use of neonicotinoids is currently promoted.  相似文献   

18.
Protein-rich diets are known to promote ovarian and egg development in workers of the honeybee, Apis mellifera, even in the presence of a queen. Since the main source of protein for honeybees is pollen, its quality and digestibility might be important dietary factors determining reproductive capacity. We have compared the effect of two types of pollen-sunflower, Helianthus annuus, and aloe, Aloe greatheadii var davyana-on ovarian development in A. mellifera scutellata workers. Under queenright conditions in the field, worker bees exhibited greater ovarian development when feeding on aloe pollen than on sunflower pollen. In their midgut, we observed higher extraction efficiency for aloe (80%) than for sunflower (69%) pollen. This may be attributed to the morphology and size of the two kinds of pollen grains and explains, together with the high protein content of aloe pollen (32% dry mass in bee-collected pollen) compared to sunflower pollen (15%), why aloe pollen promoted higher ovarian development. However, in the laboratory workers sustained on aloe pollen had significantly less-developed ovaries and higher mortality than those fed sunflower pollen. These detrimental effects may be due to an unbalanced protein:carbohydrate ratio. We discuss the effects of unbalanced diets on the physiology and ecology of honeybee reproduction.  相似文献   

19.
Anthropogenic accumulation of metals such as manganese is a well-established health risk factor for vertebrates. By contrast, the long-term impact of these contaminants on invertebrates is mostly unknown. Here, we demonstrate that manganese ingestion alters brain biogenic amine levels in honeybees and fruit flies. Furthermore, we show that manganese exposure negatively affects foraging behaviour in the honeybee, an economically important pollinator. Our findings indicate that in addition to its direct impact on human health, the common industrial contaminant manganese might also have indirect environmental and economical impacts via the modulation of neuronal and behavioural functions in economically important insects.  相似文献   

20.
A density-dependent Markov process model is constructed for information transfer among scouts during nest-site selection by honeybees (Apis mellifera). The effects of site quality, competition between sites and delays in site discovery are investigated. The model predicts that bees choose the better of two sites more reliably when both sites are of low quality than when both sites are of high quality and that delay in finding a second site has most effect on the final choice when both sites are of high quality. The model suggests that stochastic effects in honeybee nest-site selection confer no advantage on the swarm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号