首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial version of Prisoners Dilemma (PD) is studied, which incorporates habitat decay through change in the mortality parameter and habitat isolation through change in the colonization coefficient. We found four kinds of evolutionary results, which are affected profoundly by the elements of the payoff matrix and the ratio of the colonization coefficient to the mortality parameter: population extinction, a pure cooperator population, coexistence of cooperators and defectors, and a pure defector population. First, the parameter region of cooperation (pure cooperator and coexistence region) shrinks with an increase in the cooperative cost, and that of defection extends. The increase in cooperative reward makes the cooperative region extend and the defector region become small. Second, the cooperative reward can compensate for the extinction risk due to habitat destruction and allow a population to survive even if the colonization coefficient is smaller than the mortality parameter. Third, although habitat destruction (including decay and isolation) increase the extinction risk of a population, moderate external power can push the evolution of cooperation ahead of population extinction, and even make a completely cooperative world come into being. Finally, for certain values of elements of the payoff matrix, the population suffering habitat destruction can maintain a stable population size by regulating the frequencies of cooperators and defectors. This implies that the multi-behavior strategy within a population may be a mechanism to defend against the influences of a changing environment.  相似文献   

2.
As natural selection acts on individual organisms the evolution of costly cooperation between microorganisms is an intriguing phenomenon. Introduction of spatial structure to privatize exchanged molecules can explain the evolution of cooperation. However, in many natural systems cells can also grow to low cell concentrations in the absence of these exchanged molecules, thus showing “cooperation-independent background growth”. We here serially propagated a synthetic cross-feeding consortium of lactococci in the droplets of a water-in-oil emulsion, essentially mimicking group selection with varying founder population sizes. The results show that when the growth of cheaters completely depends on cooperators, cooperators outcompete cheaters. However, cheaters outcompete cooperators when they can independently grow to only ten percent of the consortium carrying capacity. This result is the consequence of a probabilistic effect, as low founder population sizes in droplets decrease the frequency of cooperator co-localization. Cooperator-enrichment can be recovered by increasing the founder population size in droplets to intermediate values. Together with mathematical modelling our results suggest that co-localization probabilities in a spatially structured environment leave a small window of opportunity for the evolution of cooperation between organisms that do not benefit from their cooperative trait when in isolation or form multispecies aggregates.Subject terms: Community ecology, Microbial ecology, Evolution, Microbial ecology  相似文献   

3.
When cooperation is critical for survival, cheating can lead to population collapse. One mechanism of cooperation that permits the coexistence of cooperators and cheaters is an impure public good, whose public benefits are shared, but with a private benefit retained by the cooperator. It has yet to be determined how the contributions of the public and private benefit affect population survival. Using simulations and experiments with β-lactamase-expressing bacteria, we found that for a given amount of public and private benefit, the population was most sensitive to collapse when initiated from an intermediate fraction of cooperators due to the near-concurrent collapse of the cooperator and cheater populations. We found that increasing the ratio of public to private benefit increased sensitivity to collapse. A low ratio allowed cooperators to survive on their private benefit after the public benefit could not rescue the cheaters. A high ratio allowed the cheaters to survive to high concentrations of ampicillin due to the high public benefit. However, small increases in ampicillin caused a rapid decline in the entire population as the private benefit was insufficient to allow self-rescue of the cooperators. Our findings have implications in the persistence of populations that rely on cooperation for survival.  相似文献   

4.
We study a model in which cooperation and defection coexist in a dynamical steady state. In our model, subpopulations of cooperators and defectors inhabit sites on a lattice. The interactions among the individuals at a site, in the form of a prisoner's dilemma (PD) game, determine their fitnesses. The chosen PD payoff allows cooperators, but not defectors, to maintain a homogeneous population. Individuals mutate between types and migrate to neighboring sites with low probabilities. We consider both density-dependent and density-independent versions of the model. The persistence of cooperation in this model can be explained in terms of the life cycle of a population at a site. This life cycle starts when one cooperator establishes a population. Then defectors invade and eventually take over, resulting finally in the death of the population. During this life cycle, single cooperators migrate to empty neighboring sites to found new cooperator populations. The system can reach a steady state where cooperation prevails if the global "birth" rate of populations is equal to their global "death" rate. The dynamic persistence of cooperation ranges over a large section of the model's parameter space. We compare these dynamics to those from other models for the persistence of altruism and to predator-prey models.  相似文献   

5.
We investigate the evolution of public goods cooperation in a metapopulation model with small local populations, where altruistic cooperation can evolve due to assortment and kin selection, and the evolutionary emergence of cooperators and defectors via evolutionary branching is possible. Although evolutionary branching of cooperation has recently been demonstrated in the continuous snowdrift game and in another model of public goods cooperation, the required conditions on the cost and benefit functions are rather restrictive, e.g., altruistic cooperation cannot evolve in a defector population. We also observe selection for too low cooperation, such that the whole metapopulation goes extinct and evolutionary suicide occurs. We observed intuitive effects of various parameters on the numerical value of the monomorphic singular strategy. Their effect on the final coexisting cooperator–defector pair is more complex: changes expected to increase cooperation decrease the strategy value of the cooperator. However, at the same time the population size of the cooperator increases enough such that the average strategy does increase. We also extend the theory of structured metapopulation models by presenting a method to calculate the fitness gradient in a general class of metapopulation models, and try to make a connection with the kin selection approach.  相似文献   

6.
We investigate the influence of initial fraction of cooperators on the evolution of cooperation in spatial prisoner''s dilemma games. Compared with the results of heterogeneous networks, we find that there is a relatively low initial fraction of cooperators to guarantee higher equilibrium cooperative level. While this interesting phenomenon is contrary to the commonly shared knowledge that higher initial fraction of cooperators can provide better environment for the evolution of cooperation. To support our outcome, we explore the time courses of cooperation and find that the whole course can be divided into two sequent stages: enduring (END) and expanding (EXP) periods. At the end of END period, thought there is a limited number of cooperator clusters left for the case of low initial setup, these clusters can smoothly expand to hold the whole system in the EXP period. However, for high initial fraction of cooperators, superfluous cooperator clusters hinder their effective expansion, which induces many remaining defectors surrounding the cooperator clusters. Moreover, through intensive analysis, we also demonstrate that when the tendency of three cooperation cluster characteristics (cluster size, cluster number and cluster shape) are consistent within END and EXP periods, the state that maximizes cooperation can be favored.  相似文献   

7.
We study the problem of the emergence of cooperation in the spatial Prisoner's Dilemma. The pioneering work by Nowak and May [1992. Evolutionary games and spatial chaos. Nature 415, 424-426] showed that large initial populations of cooperators can survive and sustain cooperation in a square lattice with imitate-the-best evolutionary dynamics. We revisit this problem in a cost-benefit formulation suitable for a number of biological applications. We show that if a fixed-amount reward is established for cooperators to share, a single cooperator can invade a population of defectors and form structures that are resilient to re-invasion even if the reward mechanism is turned off. We discuss analytically the case of the invasion by a single cooperator and present agent-based simulations for small initial fractions of cooperators. Large cooperation levels, in the sustainability range, are found. In the conclusions we discuss possible applications of this model as well as its connections with other mechanisms proposed to promote the emergence of cooperation.  相似文献   

8.
By benefitting others at a cost to themselves, cooperators face an ever present threat from defectors—individuals that avail themselves of the cooperative benefit without contributing. A longstanding challenge to evolutionary biology is to understand the mechanisms that support the many instances of cooperation that nevertheless exist. In spatially-structured environments, clustered cooperator populations reach greater densities, which creates more mutational opportunities to gain beneficial non-social adaptations. Hammarlund et al. recently demonstrated that cooperation rises in abundance by hitchhiking with these non-social mutations. However, once adaptive opportunities have been exhausted, the ride abruptly ends as cooperators are displaced by adapted defectors. Using an agent-based model, we demonstrate that the selective feedback that is created as populations construct their local niches can maintain cooperation at high proportions and even allow cooperators to invade. This cooperator success depends specifically on negative niche construction, which acts as a perpetual source of adaptive opportunities. As populations adapt, they alter their environment in ways that reveal additional opportunities for adaptation. Despite being independent of niche construction in our model, cooperation feeds this cycle. By reaching larger densities, populations of cooperators are better able to adapt to changes in their constructed niche and successfully respond to the constant threat posed by defectors. We relate these findings to previous studies from the niche construction literature and discuss how this model could be extended to provide a greater understanding of how cooperation evolves in the complex environments in which it is found.  相似文献   

9.
The joint venture of many members is common both in animal world and human society. In these public enterprizes, highly cooperative groups are more likely to while low cooperative groups are still possible but not probable to succeed. Existent literature mostly focuses on the traditional public goods game, in which cooperators create public wealth unconditionally and benefit all group members unbiasedly. We here institute a model addressing this public goods dilemma with incorporating the public resource foraging failure risk. Risk-averse individuals tend to lead a autarkic life, while risk-preferential ones tend to participate in the risky public goods game. For participants, group''s success relies on its cooperativeness, with increasing contribution leading to increasing success likelihood. We introduce a function with one tunable parameter to describe the risk removal pattern and study in detail three representative classes. Analytical results show that the widely replicated population dynamics of cyclical dominance of loner, cooperator and defector disappear, while most of the time loners act as savors while eventually they also disappear. Depending on the way that group''s success relies on its cooperativeness, either cooperators pervade the entire population or they coexist with defectors. Even in the later case, cooperators still hold salient superiority in number as some defectors also survive by parasitizing. The harder the joint venture succeeds, the higher level of cooperation once cooperators can win the evolutionary race. Our work may enrich the literature concerning the risky public goods games.  相似文献   

10.
The emergence and maintenance of cooperation by natural selection is an enduring conundrum in evolutionary biology, which has been studied using a variety of game theoretical models inspired by different biological situations. The most widely studied games are the Prisoner's Dilemma, the Snowdrift game and by-product mutualism for pairwise interactions, as well as Public Goods games in larger groups of interacting individuals. Here, we present a general framework for cooperation in social dilemmas in which all the traditional scenarios can be recovered as special cases. In social dilemmas, cooperators provide a benefit to the group at some cost, while defectors exploit the group by reaping the benefits without bearing the costs of cooperation. Using the concepts of discounting and synergy for describing how benefits accumulate when more than one cooperator is present in a group of interacting individuals, we recover the four basic scenarios of evolutionary dynamics given by (i) dominating defection, (ii) coexistence of defectors and cooperators, (iii) dominating cooperation and (iv) bi-stability, in which cooperators and defectors cannot invade each other. Generically, for groups of three or more interacting individuals further, more complex, dynamics can occur. Our framework provides the first unifying approach to model cooperation in different kinds of social dilemmas.  相似文献   

11.
Spatial invasion of cooperation   总被引:2,自引:0,他引:2  
The evolutionary puzzle of cooperation describes situations where cooperators provide a fitness benefit to other individuals at some cost to themselves. Under Darwinian selection, the evolution of cooperation is a conundrum, whereas non-cooperation (or defection) is not. In the absence of supporting mechanisms, cooperators perform poorly and decrease in abundance. Evolutionary game theory provides a powerful mathematical framework to address the problem of cooperation using the prisoner's dilemma. One well-studied possibility to maintain cooperation is to consider structured populations, where each individual interacts only with a limited subset of the population. This enables cooperators to form clusters such that they are more likely to interact with other cooperators instead of being exploited by defectors. Here we present a detailed analysis of how a few cooperators invade and expand in a world of defectors. If the invasion succeeds, the expansion process takes place in two stages: first, cooperators and defectors quickly establish a local equilibrium and then they uniformly expand in space. The second stage provides good estimates for the global equilibrium frequencies of cooperators and defectors. Under hospitable conditions, cooperators typically form a single, ever growing cluster interspersed with specks of defectors, whereas under more hostile conditions, cooperators form isolated, compact clusters that minimize exploitation by defectors. We provide the first quantitative assessment of the way cooperators arrange in space during invasion and find that the macroscopic properties and the emerging spatial patterns reveal information about the characteristics of the underlying microscopic interactions.  相似文献   

12.
Cooperation is one of the essential factors for all biological organisms in major evolutionary transitions. Recent studies have investigated the effect of migration for the evolution of cooperation. However, little is known about whether and how an individuals’ cooperativeness coevolves with mobility. One possibility is that mobility enhances cooperation by enabling cooperators to escape from defectors and form clusters; the other possibility is that mobility inhibits cooperation by helping the defectors to catch and exploit the groups of cooperators. In this study we investigate the coevolutionary dynamics by using the prisoner’s dilemma game model on a lattice structure. The computer simulations demonstrate that natural selection maintains cooperation in the form of evolutionary chasing between the cooperators and defectors. First, cooperative groups grow and collectively move in the same direction. Then, mutant defectors emerge and invade the cooperative groups, after which the defectors exploit the cooperators. Then other cooperative groups emerge due to mutation and the cycle is repeated. Here, it is worth noting that, as a result of natural selection, the mobility evolves towards directional migration, but not to random or completely fixed migration. Furthermore, with directional migration, the rate of global population extinction is lower when compared with other cases without the evolution of mobility (i.e., when mobility is preset to random or fixed). These findings illustrate the coevolutionary dynamics of cooperation and mobility through the directional chasing between cooperators and defectors.  相似文献   

13.
The evolution of cooperation is one of the great puzzles in evolutionary biology. Punishment has been suggested as one solution to this problem. Here punishment is generally defined as incurring a cost to inflict harm on a wrong-doer. In the presence of punishers, cooperators can gain higher payoffs than non-cooperators. Therefore cooperation may evolve as long as punishment is prevalent in the population. Theoretical models have revealed that spatial structure can favor the co-evolution of punishment and cooperation, by allowing individuals to only play and compete with those in their immediate neighborhood. However, those models have usually assumed that punishment is always targeted at non-cooperators. In light of recent empirical evidence of punishment targeted at cooperators, we relax this assumption and study the effect of so-called ‘anti-social punishment’. We find that evolution can favor anti-social punishment, and that when anti-social punishment is possible costly punishment no longer promotes cooperation. As there is no reason to assume that cooperators cannot be the target of punishment during evolution, our results demonstrate serious restrictions on the ability of costly punishment to allow the evolution of cooperation in spatially structured populations. Our results also help to make sense of the empirical observation that defectors will sometimes pay to punish cooperators.  相似文献   

14.
Understanding the emergence of cooperation is a central issue in evolutionary game theory. The hardest setup for the attainment of cooperation in a population of individuals is the Public Goods game in which cooperative agents generate a common good at their own expenses, while defectors “free-ride” this good. Eventually this causes the exhaustion of the good, a situation which is bad for everybody. Previous results have shown that introducing reputation, allowing for volunteer participation, punishing defectors, rewarding cooperators or structuring agents, can enhance cooperation. Here we present a model which shows how the introduction of rare, malicious agents - that we term jokers - performing just destructive actions on the other agents induce bursts of cooperation. The appearance of jokers promotes a rock-paper-scissors dynamics, where jokers outbeat defectors and cooperators outperform jokers, which are subsequently invaded by defectors. Thus, paradoxically, the existence of destructive agents acting indiscriminately promotes cooperation.  相似文献   

15.
The Public Goods Game is one of the most popular models for studying the origin and maintenance of cooperation. In its simplest form, this evolutionary game has two regimes: defection goes to fixation if the multiplication factor r is smaller than the interaction group size N, whereas cooperation goes to fixation if the multiplication factor r is larger than the interaction group size N. Hauert et al. [Hauert, C., Holmes, M., Doebeli, M., 2006a. Evolutionary games and population dynamics: Maintenance of cooperation in public goods games. Proc. R. Soc. Lond. B 273, 2565-2570] have introduced the Ecological Public Goods Game by viewing the payoffs from the evolutionary game as birth rates in a population dynamic model. This results in a feedback between ecological and evolutionary dynamics: if defectors are prevalent, birth rates are low and population densities decline, which leads to smaller interaction groups for the Public Goods game, and hence to dominance of cooperators, with a concomitant increase in birth rates and population densities. This feedback can lead to stable co-existence between cooperators and defectors. Here we provide a detailed analysis of the dynamics of the Ecological Public Goods Game, showing that the model exhibits various types of bifurcations, including supercritical Hopf bifurcations, which result in stable limit cycles, and hence in oscillatory co-existence of cooperators and defectors. These results show that including population dynamics in evolutionary games can have important consequences for the evolutionary dynamics of cooperation.  相似文献   

16.
Reputation formation is a key to understanding indirect reciprocity. In particular, the way to assign reputation to each individual, namely a norm that describes who is good and who is bad, greatly affects the possibility of sustained cooperation in the population. Previously, we have exhaustively studied reputation dynamics that are able to maintain a high level of cooperation at the ESS. However, this analysis examined the stability of monomorphic population and did not investigate polymorphic population where several strategies coexist. Here, we study the evolutionary dynamics of multiple behavioral strategies by replicator dynamics. We exhaustively study all 16 possible norms under which the reputation of a player in the next round is determined by the action of the self and the reputation of the opponent. For each norm, we explore evolutionary dynamics of three strategies: unconditional cooperators, unconditional defectors, and conditional cooperators. We find that only three norms, simple-standing, Kandori, and shunning, can make conditional cooperation evolutionarily stable, hence, realize sustained cooperation. The other 13 norms, including scoring, ultimately lead to the invasion by defectors. Also, we study the model in which private reputation errors exist to a small extent. In this case, we find the stable coexistence of unconditional and conditional cooperators under the three norms.  相似文献   

17.
Transforming the dilemma   总被引:1,自引:0,他引:1  
How does natural selection lead to cooperation between competing individuals? The Prisoner's Dilemma captures the essence of this problem. Two players can either cooperate or defect. The payoff for mutual cooperation, R, is greater than the payoff for mutual defection, P. But a defector versus a cooperator receives the highest payoff, T, where as the cooperator obtains the lowest payoff, S. Hence, the Prisoner's Dilemma is defined by the payoff ranking T > R > P > S . In a well‐mixed population, defectors always have a higher expected payoff than cooperators, and therefore natural selection favors defectors. The evolution of cooperation requires specific mechanisms. Here we discuss five mechanisms for the evolution of cooperation: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity (or graph selection). Each mechanism leads to a transformation of the Prisoner's Dilemma payoff matrix. From the transformed matrices, we derive the fundamental conditions for the evolution of cooperation. The transformed matrices can be used in standard frameworks of evolutionary dynamics such as the replicator equation or stochastic processes of game dynamics in finite populations.  相似文献   

18.
A generalized version of the N-person volunteer's dilemma (NVD) Game has been suggested recently for illustrating the problem of N-person social dilemmas. Using standard replicator dynamics it can be shown that coexistence of cooperators and defectors is typical in this model. However, the question of how a rare mutant cooperator could invade a population of defectors is still open.  相似文献   

19.
Public goods games have become the mathematical metaphor for game theoretical investigations of cooperative behavior in groups of interacting individuals. Cooperation is a conundrum because cooperators make a sacrifice to benefit others at some cost to themselves. Exploiters or defectors reap the benefits and forgo costs. Despite the fact that groups of cooperators outperform groups of defectors, Darwinian selection or utilitarian principles based on rational choice should favor defectors. In order to overcome this social dilemma, much effort has been expended for investigations pertaining to punishment and sanctioning measures against defectors. Interestingly, the complementary approach to create positive incentives and to reward cooperation has received considerably less attention—despite being heavily advocated in education and social sciences for increasing productivity or preventing conflicts. Here we show that rewards can indeed stimulate cooperation in interaction groups of arbitrary size but, in contrast to punishment, fail to stabilize it. In both cases, however, reputation is essential. The combination of reward and reputation result in complex dynamics dominated by unpredictable oscillations.  相似文献   

20.
The evolution of cooperation is an enduring conundrum in biology and the social sciences. Two social dilemmas, the prisoner's dilemma and the snowdrift game have emerged as the most promising mathematical metaphors to study cooperation. Spatial structure with limited local interactions has long been identified as a potent promoter of cooperation in the prisoner's dilemma but in the spatial snowdrift game, space may actually enhance or inhibit cooperation. Here we investigate and link the microscopic interaction between individuals to the characteristics of the emerging macroscopic patterns generated by the spatial invasion process of cooperators in a world of defectors. In our simulations, individuals are located on a square lattice with Moore neighborhood and update their strategies by probabilistically imitating the strategies of better performing neighbors. Under sufficiently benign conditions, cooperators can survive in both games. After rapid local equilibration, cooperators expand quadratically until global saturation is reached. Under favorable conditions, cooperators expand as a large contiguous cluster in both games with minor differences concerning the shape of embedded defectors. Under less favorable conditions, however, distinct differences arise. In the prisoner's dilemma, cooperators break up into isolated, compact clusters. The compact clustering reduces exploitation and leads to positive assortment, such that cooperators interact more frequently with other cooperators than with defectors. In contrast, in the snowdrift game, cooperators form small, dendritic clusters, which results in negative assortment and cooperators interact more frequently with defectors than with other cooperators. In order to characterize and quantify the emerging spatial patterns, we introduce a measure for the cluster shape and demonstrate that the macroscopic patterns can be used to determine the characteristics of the underlying microscopic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号