首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sphingosine 1-phosphate (S1P) is an extra- and intracellular mediator that regulates cell growth, survival, migration, and adhesion in many cell types. S1P lyase is the enzyme that irreversibly cleaves S1P and thereby constitutes the ultimate step in sphingolipid catabolism. It has been reported previously that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs) are resistant to chemotherapy-induced apoptosis through upregulation of B cell lymphoma 2 (Bcl-2) and Bcl-2-like 1 (Bcl-xL). Here, we demonstrate that the transporter proteins Abcc1/MRP1, Abcb1/MDR1, Abca1, and spinster-2 are upregulated in Sgpl1−/−-MEFs. Furthermore, the cells efficiently sequestered the substrates of Abcc1 and Abcb1, fluo-4 and doxorubicin, in subcellular compartments. In line with this, Abcb1 was localized mainly at intracellular vesicular structures. After 16 h of incubation, wild-type MEFs had small apoptotic nuclei containing doxorubicin, whereas the nuclei of Sgpl1−/−-MEFs appeared unchanged and free of doxorubicin. A combined treatment with the inhibitors of Abcb1 and Abcc1, zosuquidar and MK571, respectively, reversed the compartmentalization of doxorubicin and rendered the cells sensitive to doxorubicin-induced apoptosis. It is concluded that upregulation of multidrug resistance transporters contributes to the chemoresistance of S1P lyase-deficient MEFs.  相似文献   

2.
GltPh from Pyrococcus horikoshii is a homotrimeric Na+-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters that take up the neurotransmitter glutamate. Each protomer in GltPh consists of a trimerization domain involved in subunit interactions and a transport domain containing the substrate binding site. Here, we have studied the dynamics of Na+ and aspartate binding to GltPh. Tryptophan fluorescence measurements on the fully active single tryptophan mutant F273W revealed that Na+ binds with low affinity to the apoprotein (Kd 120 mm), with a particularly low kon value (5.1 m−1s−1). At least two sodium ions bind before aspartate. The binding of Na+ requires a very high activation energy (Ea 106.8 kJ mol−1) and consequently has a large Q10 value of 4.5, indicative of substantial conformational changes before or after the initial binding event. The apparent affinity for aspartate binding depended on the Na+ concentration present. Binding of aspartate was not observed in the absence of Na+, whereas in the presence of high Na+ concentrations (above the Kd for Na+) the dissociation constants for aspartate were in the nanomolar range, and the aspartate binding was fast (kon of 1.4 × 105 m−1s−1), with low Ea and Q10 values (42.6 kJ mol−1 and 1.8, respectively). We conclude that Na+ binding is most likely the rate-limiting step for substrate binding.  相似文献   

3.
This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.  相似文献   

4.

Background

Pseudoxanthoma elasticum (PXE), caused by mutations in the ABCC6 gene, is a rare multiorgan disease characterized by the mineralization and fragmentation of elastic fibers in connective tissue. Cardiac complications reportedly associated with PXE are mainly based on case reports.

Methods

A cohort of 67 PXE patients was prospectively assessed. Patients underwent physical examination, electrocardiogram, transthoracic echocardiography, cardiac magnetic resonance imaging (CMR), treadmill testing, and perfusion myocardial scintigraphy (SPECT). Additionally, the hearts of a PXE mouse models (Abcc6−/−) and wild-type controls (WT) were analyzed.

Results

Three patients had a history of proven coronary artery disease. In total, 40 patients underwent exercise treadmill tests, and 28 SPECT. The treadmill tests were all negative. SPECT showed mild perfusion abnormalities in two patients. Mean left ventricular (LV) dimension and function values were within the normal range. LV hypertrophy was found in 7 (10.4%) patients, though the hypertrophy etiology was unknown for 3 of those patients. Echocardiography revealed frequent but insignificant mitral and tricuspid valvulopathies. Mitral valve prolapse was present in 3 patients (4.5%). Two patients exhibited significant aortic stenosis (3.0%). While none of the functional and histological parameters diverged significantly between the Abcc6−/− and WT mice groups at age of 6 and 12 months, the 24-month-old Abcc6−/− mice developed cardiac hypertrophy without contractile dysfunction.

Conclusions

Despite sporadic cases, PXE does not appear to be associated with frequent cardiac complications. However, the development of cardiac hypertrophy in the 24-month-old Abcc6−/− mice suggests that old PXE patients might be prone to developing late cardiopathy.  相似文献   

5.
Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo−/− mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo−/− mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo−/− mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD+, did not differ between Kmo−/− and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo−/− mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo−/− mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.  相似文献   

6.
Pseudoxanthoma elasticum (PXE) and generalized arterial calcification of infancy (GACI) are heritable ectopic mineralization disorders. Most cases of PXE and many cases of GACI harbor mutations in the ABCC6 gene. There is no effective treatment for these disorders. We explored the potential efficacy of bisphosphonates to prevent ectopic calcification caused by ABCC6 mutations by feeding Abcc6−/− mice with diet containing etidronate disodium (ETD) or alendronate sodium trihydrate (AST) in quantities corresponding to 1x, 5x, or 12x of the doses used to treat osteoporosis in humans. The mice were placed on diet at 4 weeks of age, and the degree of mineralization was assessed at 12 weeks by quantitation of the calcium deposits in the dermal sheath of vibrissae, a progressive biomarker of the mineralization, by computerized morphometry of histopathologic sections and by direct chemical assay of calcium. We found that ETD, but not AST, at the 12x dosage, significantly reduced mineralization, suggesting that selected bisphosphonates may be helpful for prevention of mineral deposits in PXE and GACI caused by mutations in the ABCC6 gene, when combined with careful monitoring of efficacy and potential side-effects.  相似文献   

7.

Background and Aims

Flawed ABC transporter functions may contribute to increased risk of drug-induced liver injury (DILI). We aimed to analyse the influence of genetic variations in ABC transporters on the risk of DILI development and clinical presentations in a large Spanish DILI cohort.

Methods

A total of ten polymorphisms in ABCB1 (1236T>C, 2677G>T,A, 3435T>C), ABCB4 (1954A>G) and ABCC2 (−1774G>del, −1549A>G, −24C>T, 1249G>A, 3972C>T and 4544G>A) were genotyped using Taqman 5′ allelic discrimination assays or sequencing in 141 Spanish DILI patients and 161 controls. The influence of specific genotypes, alleles and haplotypes on the risk of DILI development and clinical presentations was analysed.

Results

None of the individual polymorphisms or haplotypes was found to be associated with DILI development. Carriers homozygous for the ABCC2 −1774del allele were however only found in DILI patients. Hence, this genotype could potentially be associated with increased risk, though its low frequency in our Spanish cohort prevented a final conclusion. Furthermore, carriers homozygous for the ABCC2 −1774G/−1549A/−24T/1249G/3972T/4544G haplotype were found to have a higher propensity for total bilirubin elevations when developing DILI.

Conclusions

Our findings do not support a role for the analysed polymorphisms in the ABCB1, ABCB4 and ABCC2 transporter genes in DILI development in Spanish patients. The ABCC2 −1774deldel genotype was however restricted to DILI cases and could potentially contribute to enhanced DILI susceptibility.  相似文献   

8.
9.
Hypoxia-ischemia (HI) and excitotoxicity are validated causes of neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor-mediated pathways. Brain microvascular endothelial cells from neonates in culture, contain and release more t-PA and gelatinases upon glutamate challenge than adult cells. We have studied t-PA to gelatinase (MMP-2 and MMP-9) activity links in HI and excitotoxicity lesion models in 5 day–old pups in wild type and in t-PA or its inhibitor (PAI-1) genes inactivated mice. Gelatinolytic activities were detected in SDS-PAGE zymograms and by in situ fluorescent DQ-gelatin microscopic zymographies. HI was achieved by unilateral carotid ligature followed by a 40 min hypoxia (8%O2). Excitotoxic lesions were produced by intra parenchymal cortical (i.c.) injections of 10 µg ibotenate (Ibo). Gel zymograms in WT cortex revealed progressive extinction of MMP-2 and MMP-9 activities near day 15 or day 8 respectively. MMP-2 expression was the same in all strains while MMP-9 activity was barely detectable in t-PA−/− and enhanced in PAI-1−/− mice. HI or Ibo produced activation of MMP-2 activities 6 hours post-insult, in cortices of WT mice but not in t-PA−/− mice. In PAI-1−/− mice, HI or vehicle i.c. injection increased MMP-2 and MMP-9 activities. In situ zymograms using DQ-gelatin revealed vessel associated gelatinolytic activity in lesioned areas in PAI-1−/− and in WT mice. In WT brain slices incubated ex vivo, glutamate (200 µM) induced DQ-gelatin activation in vessels. The effect was not detected in t-PA−/−mice, but was restored by concomitant exposure to recombinant t-PA (20 µg/mL). In summary, neonatal brain lesion paradigms and ex vivo excitotoxic glutamate evoked t-PA-dependent gelatinases activation in vessels. Both MMP-2 and MMP-9 activities appeared t-PA-dependent. The data suggest that vascular directed protease inhibition may have neuroprotection potential against neonatal brain injuries.  相似文献   

10.
11.
L-isoaspartyl (D-aspartyl) O-methyltransferase deficient mice (Pcmt1−/−) accumulate isomerized aspartyl residues in intracellular proteins until their death due to seizures at approximately 45 days. Previous studies have shown that these mice have constitutively activated insulin signaling in their brains, and that these brains are 20–30% larger than those from age-matched wild-type animals. To determine whether insulin pathway activation and brain enlargement is responsible for the fatal seizures, we administered wortmannin, an inhibitor of the phosphoinositide 3-kinase that catalyzes an early step in the insulin pathway. Oral wortmannin reduced the average brain size in the Pcmt1−/− animals to within 6% of the wild-type DMSO administered controls, and nearly doubled the lifespan of Pcmt1−/− at 60% survival of the original population. Immunoblotting revealed significant decreases in phosphorylation of Akt, PDK1, and mTOR in Pcmt1−/− mice and Akt and PDK1 in wild-type animals upon treatment with wortmannin. These data suggest activation of the insulin pathway and its resulting brain enlargement contributes to the early death of Pcmt1−/− mice, but is not solely responsible for the early death observed in these animals.  相似文献   

12.
Glucose homeostasis in mammals is dependent on the opposing actions of insulin and glucagon. The Golgi N-acetylglucosaminyltransferases encoded by Mgat1, Mgat2, Mgat4a/b/c, and Mgat5 modify the N-glycans on receptors and solute transporter, possibly adapting activities in response to the metabolic environment. Herein we report that Mgat5−/− mice display diminished glycemic response to exogenous glucagon, together with increased insulin sensitivity. Glucagon receptor signaling and gluconeogenesis in Mgat5−/− cultured hepatocytes was impaired. In HEK293 cells, signaling by ectopically expressed glucagon receptor was increased by Mgat5 expression and GlcNAc supplementation to UDP-GlcNAc, the donor substrate shared by Mgat branching enzymes. The mobility of glucagon receptor in primary hepatocytes was reduced by galectin-9 binding, and the strength of the interaction was dependent on Mgat5 and UDP-GlcNAc levels. Finally, oral GlcNAc supplementation rescued the glucagon response in Mgat5−/− hepatocytes and mice, as well as glycolytic metabolites and UDP-GlcNAc levels in liver. Our results reveal that the hexosamine biosynthesis pathway and GlcNAc salvage contribute to glucose homeostasis through N-glycan branching on glucagon receptor.  相似文献   

13.
The septin family of GTPases, first identified for their roles in cell division, are also expressed in postmitotic tissues. SEPT3 (G-septin) and SEPT5 (CDCrel-1) are highly expressed in neurons, enriched in presynaptic terminals, and associated with synaptic vesicles. These characteristics suggest that SEPT3 or SEPT5 might be important for synapse formation, maturation, or synaptic vesicle traffic. Since Sept5−/− mice do not show any overt neurological phenotypes, we generated Sept3−/− and Sept3−/− Sept5−/− mice and found that SEPT3 and SEPT5 are not essential for development, fertility, or viability. Changes in the expression of septins were noted in the absence of SEPT3, SEPT5, and both septins. SEPT5 association with other septins in brain tissue was unaffected by the removal of SEPT3. No abnormalities were observed in the gross morphology and synapses of the hippocampus. Similarly, axon development and synapse formation were unaffected in vitro. In cultured hippocampal neurons, the size of the recycling synaptic vesicle pool was unaltered in the absence of SEPT3. Furthermore, synaptic transmission at two different central synapses was not significantly affected in Sept3−/− Sept5−/− mice. These results indicate that SEPT3 and SEPT5 are dispensable for neuronal development as well as for synaptic vesicle fusion and recycling.  相似文献   

14.
The cystine/glutamate transporter, designated as system xc, is important for maintaining intracellular glutathione levels and extracellular redox balance. The substrate-specific component of system xc, xCT, is strongly induced by various stimuli, including oxidative stress, whereas it is constitutively expressed only in specific brain regions and immune tissues, such as the thymus and spleen. Although cystine and glutamate are the well established substrates of system xc and the knockout of xCT leads to alterations of extracellular redox balance, nothing is known about other potential substrates. We thus performed a comparative metabolite analysis of tissues from xCT-deficient and wild-type mice using capillary electrophoresis time-of-flight mass spectrometry. Although most of the analyzed metabolites did not show significant alterations between xCT-deficient and wild-type mice, cystathionine emerged as being absent specifically in the thymus and spleen of xCT-deficient mice. No expression of either cystathionine β-synthase or cystathionine γ-lyase was observed in the thymus and spleen of mice. In embryonic fibroblasts derived from wild-type embryos, cystine uptake was significantly inhibited by cystathionine in a concentration-dependent manner. Wild-type cells showed an intracellular accumulation of cystathionine when incubated in cystathionine-containing buffer, which concomitantly stimulated an increased release of glutamate into the extracellular space. By contrast, none of these effects could be observed in xCT-deficient cells. Remarkably, unlike knock-out cells, wild-type cells could be rescued from cystine deprivation-induced cell death by cystathionine supplementation. We thus conclude that cystathionine is a novel physiological substrate of system xc and that the accumulation of cystathionine in immune tissues is exclusively mediated by system xc.  相似文献   

15.
In order to maintain normal functioning of the brain, glutamate homeostasis and extracellular levels of excitotoxic amino acids (EAA) must be tightly controlled. This is accomplished, in large measure, by the astroglial high-affinity Na+-dependent EAA transporters glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). Methylmercury (MeHg) is a potent neurotoxicant. Astrocytes are known targets for MeHg toxicity, representing a site for mercury localization. Mehg is known to cause astrocytic swelling, EAA release, and uptake inhibition in astrocytes, leading to increased extracellular glutamate levels and ensuing neuronal excitotoxicity and degeneration. However, the mechanisms and contribution of specific glutamate transporters to MeHg-induced glutamate dyshomeostasis remain unknown. Accordingly, the present study was carried out to investigate the effects of MeHg on the transport of [d-2, 3-3H]-d-aspartate, a nonmetabolizable glutamate analog in Chinese hamster ovary cells (CHO) transfected with the glutamate transporter subtypes GLAST or GLT-1. Additional studies examined the effects of MeHg on mRNA and protein levels of these transporters. Our results indicate the following (1) MeHg selectively affects glutamate transporter mRNA expression. MeHg treatment (6 h) led to no discernible changes in GLAST mRNA expression; however, GLT-1 mRNA expression significantly (p<0.001) increased following treatments with 5 or 10 μM MeHg. (2) Selective changes in the expression of glutamate transporter protein levels were also noted. GLAST transporter protein levels significantly (p<0.001, both at 5 and 10 μM MeHg) increased and GLT-1 transporter protein levels significantly (p<0.001) decreased followign MeHg exposure (5 μM). (3) MeHg exposure led to significant inhibition (p<0.05) of glutamate uptake by GLAST (both 5 and 10 μM MeHg), whereas GLT-1 transporter activity was significantly (p<0.01) increased following exposure to 5 and 10 μM MeHg. These studies suggest that MeHg contributes to the dysregulation of glutamate homeostasis and that its effects are distinct for GLAST and GLT-1.  相似文献   

16.
The effects of 20 amino acids and two amides were studied on the flowering of a photoperiodically insensitive duckweed, Lemna paucicostata LP6. Alanine, asparagine, aspartate, cystine, glutamate, glutamine, glycine, lysine, methionine, proline, serine, and threonine induced flowering under a photoperiodic regime of 16 hours light and 8 hours darkness. Among these, glutamate and aspartate were found to be the most effective for flower induction. These acids could initiate flowering even at 5 × 10−7 molar level, though maximal flowering (about 80%) was obtained at 10−5 molar. Change in the photoperiodic schedule or the pH of the nutrient medium did not influence glutamate- or aspartate-induced flowering. The low concentrations at which glutamate and aspartate are effective suggests that they may have a regulatory role rather than simply acting as metabolites.  相似文献   

17.
ATP is a gliotransmitter released from astrocytes. Extracellularly, ATP is metabolized by a series of enzymes, including ecto-5′-nucleotidase (eN; also known as CD73) which is encoded by the gene 5NTE and functions to form adenosine (ADO) from adenosine monophosphate (AMP). Under ischemic conditions, ADO levels in brain increase up to 100-fold. We used astrocytes cultured from 5NTE+/+ or 5NTE−/− mice to evaluate the role of eN expressed by astrocytes in the production of ADO and inosine (INO) in response to glucose deprivation (GD) or oxygen-glucose deprivation (OGD). We also used co-cultures of these astrocytes with wild-type neurons to evaluate the role of eN expressed by astrocytes in the production of ADO and INO in response to GD, OGD, or N-methyl-d-aspartate (NMDA) treatment. As expected, astrocytes from 5NTE+/+ mice produced adenosine from AMP; the eN inhibitor α,β-methylene ADP (AOPCP) decreased ADO formation. In contrast, little ADO was formed by astrocytes from 5NTE−/− mice and AOPCP had no significant effect. GD and OGD treatment of 5NTE+/+ astrocytes and 5NTE+/+ astrocyte-neuron co-cultures produced extracellular ADO levels that were inhibited by AOPCP. In contrast, these conditions did not evoke ADO production in cultures containing 5NTE−/− astrocytes. NMDA treatment produced similar increases in ADO in both 5NTE+/+ and 5NTE−/− astrocyte-neuron co-cultures; dipyridamole (DPR) but not AOPCP inhibited ADO production. These results indicate that eN is prominent in the formation of ADO from astrocytes but in astrocyte-neuron co-cultures, other enzymes or pathways contribute to rising ADO levels in ischemia-like conditions.  相似文献   

18.
Branched-chain amino acid (BCAA) catabolism is regulated by branched-chain α-keto acid dehydrogenase, an enzyme complex that is inhibited when phosphorylated by its kinase (BDK). Loss of BDK function in mice and humans causes BCAA deficiency and epilepsy with autistic features. In response to amino acid deficiency, phosphorylation of eukaryotic initiation factor 2α (eIF2∼P) by general control nonderepressible 2 (GCN2) activates the amino acid stress response. We hypothesized that GCN2 functions to protect the brain during chronic BCAA deficiency. To test this idea, we generated mice lacking both Gcn2 and Bdk (GBDK) and examined the development of progeny. GBDK mice appeared normal at birth, but they soon stopped growing, developed severe ataxia, tremor, and anorexia, and died by postnatal day 15. BCAA levels in brain were diminished in both Bdk−/− and GBDK pups. Brains from Bdk−/− pups exhibited robust eIF2∼P and amino acid stress response induction, whereas these responses were absent in GBDK mouse brains. Instead, myelin deficiency and diminished expression of myelin basic protein were noted in GBDK brains. Genetic markers of oligodendrocytes and astrocytes were also reduced in GBDK brains in association with apoptotic cell death in white matter regions of the brain. GBDK brains further demonstrated reduced Sod2 and Cat mRNA and increased Tnfα mRNA expression. The data are consistent with the idea that loss of GCN2 during BCAA deficiency compromises glial cell defenses to oxidative and inflammatory stress. We conclude that GCN2 protects the brain from developing a lethal leukodystrophy in response to amino acid deficiencies.  相似文献   

19.
It previously had been proposed that the host-selective toxin of Helminthosporium maydis race T consists of a series of unusual linear (C35 to C45)polyketols, of equal toxicity on a weight or molar (10−8−10−9) basis. Previous laboratory synthesis of T-toxin analogs was limited to shorter (C15 to C26) versions which possessed the requisite specificity for susceptible corn (Zea mays) but were less toxic on a weight or molar (10−6−10−7) basis. In the present study, a C41 analog with four β-ketol units spaced by CH2 bridges as in native toxin has been synthesized. On a weight or molar basis, it is as effective as native toxin or its purified components in stimulating NADH oxidation of mitochondria from susceptible corn, thus providing firm evidence for the correctness of the proposed structures of T-toxin. Additional support derives from the observation that C24 and C26 analogs with -(CH2)4- and -(CH2)6- bridges between ketol groups are not as effective in stimulating NADH oxidation as are C23 and C25 analogs with the -(CH2)3- and -(CH2)5- bridges of native T-toxin.

It was calculated that a single molecule of the C41 analog is at least 300 times more effective in stimulating mitochondrial oxidation than a molecule of the C23 or C25 analogs. This emphasizes the importance of chain length for toxicity, perhaps through perturbation of membrane functions of mitochondria and/or chloroplasts.

  相似文献   

20.
Pseudoxanthoma elasticum (PXE) is a heritable disease characterized by calcified elastic fibers in cutaneous, ocular and vascular tissues. PXE is caused by mutations in ABCC6, which encodes a protein of the ATP-driven organic anion transporter family. The inability of this transporter to secrete its substrate into the circulation is the likely cause of PXE. Vitamin K plays a role in the regulation of mineralization processes as a co-factor in the carboxylation of calcification inhibitors such as Matrix Gla Protein (MGP). Vitamin K precursor or a conjugated form has been proposed as potential substrate(s) for ABCC6. We investigated whether an enriched diet of vitamin K1 or vitamin K2 (MK4) could stop or slow the disease progression in Abcc6-/- mice. Abcc6-/- mice were placed on a diet of either vitamin K1 or MK4 at 5 or 100 mg/kg at prenatal, 3 weeks or 3 months of age. Disease progression was quantified by measuring the calcium content of one side of the mouse muzzle skin and histological staining for calcium of the opposing side. Raising the vitamin K1 or MK4 content of the diet increased the concentration of circulating MK4 in the serum. However, this increase did not significantly affect the MGP carboxylation status or reduce its abnormal abundance, the total calcium content or the pathologic calcification in the whiskers of the 3 treatment groups compared to controls. Our findings showed that raising the dietary intake of vitamin K1 or MK4 was not beneficial in the treatment of PXE and suggested that the availability of vitamin K may not be a limiting factor in this pathology.Key words: pseudoxanthoma elasticum, vitamin K, mineralization, Abcc6, mouse  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号