共查询到20条相似文献,搜索用时 15 毫秒
1.
Bjørn A. Krafft Kit M. Kovacs Magnus Andersen Jon Aars Christian Lydersen Torbjørn Ergon † Tore Haug ‡ 《Marine Mammal Science》2006,22(2):394-412
Ringed seal (Pusa hispida) abundance in Spitsbergen, Svalbard, was estimated during the peak molting period via aerial, digital photographic surveys. A total of 9,145 images, covering 41.7%–100% of the total fast‐ice cover (1,496 km2) of 18 different fjords and bays, were inspected for the presence of ringed seals. A total of 1,708 seals were counted, and when accounting for ice areas that were not covered by images, a total of 3,254 (95% CI: 3,071–3,449) ringed seals were estimated to be hauled out during the surveys. Extensive behavioral data from radio‐tagged ringed seals (collected in a companion study) from one of the highest density fjords during the molting period were used to create a model that predicts the proportion of seals hauled out on any given date, time of day, and under various meteorological conditions. Applying this model to the count data from each fjord, we estimated that a total of 7,585 (95% CI: 6,332–9,085) ringed seals were present in the surveyed area during the peak molting period. Data on interannual variability in ringed seal abundance suggested higher numbers of seals in Van Keulenfjorden in 2002 compared to 2003, while other fjords with very stable ice cover showed no statistical differences. Poor ice conditions in general in 2002 probably resulted in seals from a wide area coming to Van Keulenfjorden (a large fjord with stable ice in 2002). The total estimated number of ringed seals present in the study area at the time of the survey must be regarded as a population index, or at least a minimum estimate for the area, because it does not account for individuals leaving and arriving, which might account for a considerable number of animals. The same situation is likely the case for many other studies reporting aerial census data for ringed seals. To achieve accurate estimates of population sizes from aerial surveys, more extensive knowledge of ringed seal behavior will be required. 相似文献
2.
Nicole P. Boucher Andrew E. Derocher Evan S. Richardson 《Ecology and evolution》2020,10(10):4178-4192
Arctic ecosystem dynamics are shifting in response to warming temperatures and sea ice loss. Such ecosystems may be monitored by examining the diet of upper trophic level species, which varies with prey availability. To assess interannual variation in the Beaufort Sea ecosystem, we examined spatial and temporal trends in ringed seal (Pusa hispida) δ13C and δ15N in claw growth layers grown from 1964 to 2011. Stable isotopes were correlated with climate indices, environmental conditions, seal population productivity, and geographic location. Sex and age did not influence stable isotopes. Enriched 13C was linked to cyclonic circulation regimes, seal productivity, and westward sampling locations. Higher δ15N was linked to lower sea surface temperatures, a higher percentage of pups in the subsistence harvest, and sample locations that were eastward and further from shore. From the 1960s to 2000s, ringed seal niche width expanded, suggesting a diversification of diet due to expansion of prey and/or seal space use. Overall, trends in ringed seal stable isotopes indicate changes within the Beaufort Sea ecosystem affected by water temperatures and circulation regimes. We suggest that continued monitoring of upper trophic level species will yield insights into changing ecosystem structure with climate change. 相似文献
3.
James D. Thomson 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1555):3187-3199
Spatio-temporal patterns of snowmelt and flowering times affect fruiting success in Erythronium grandiflorum Pursh (Liliaceae) in subalpine western Colorado, USA. From 1990 to 1995, I measured the consistency across years of snowmelt patterns and flowering times along a permanent transect. In most years since 1993, I have monitored fruit set in temporal cohorts (early- to late-flowering groups of plants) at one site. To assess ‘pollination limitation’, I have also conducted supplemental hand-pollination experiments at various times through the blooming season. The onset of blooming is determined by snowmelt, with the earliest years starting a month before the latest years owing to variation in winter snowpack accumulation. Fruit set is diminished or prevented entirely by killing frosts in some years, most frequently but not exclusively for the earlier cohorts. When frosts do not limit fruit set, pollination limitation is frequent, especially in the earlier cohorts. Pollination limitation is strongest for middle cohorts: it tends to be negated by frost in early cohorts and ameliorated by continuing emergence of bumble-bee queens in later cohorts. This lily appears to be poorly synchronized with its pollinators. Across the years of the study, pollination limitation appears to be increasing, perhaps because the synchronization is getting worse. 相似文献
4.
Caldow RW Stillman RA dit Durell SE West AD McGrorty S Goss-Custard JD Wood PJ Humphreys J 《Proceedings. Biological sciences / The Royal Society》2007,274(1616):1449-1455
Introductions of non-native species are seen as major threats to ecosystem function and biodiversity. However, invasions of aquatic habitats by non-native species are known to benefit generalist consumers that exhibit dietary switches and prey upon the exotic species in addition to or in preference to native ones. There is, however, little knowledge concerning the population-level implications of such dietary changes. Here, we show that the introduction of the Manila clam Tapes philippinarum into European coastal waters has presented the Eurasian oystercatcher Haematopus ostralegus ostralegus with a new food resource and resulted in a previously unknown predator-prey interaction between these species. We demonstrate, with an individuals-based simulation model, that the presence of this non-native shellfish, even at the current low density, has reduced the predicted over-winter mortality of oystercatchers at one recently invaded site. Further increases in clam population density are predicted to have even more pronounced effects on the density dependence of oystercatcher over-winter mortality. These results suggest that if the Manila clam were to spread around European coastal waters, a process which is likely to be facilitated by global warming, this could have considerable benefits for many shellfish-eating shorebird populations. 相似文献
5.
Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea
下载免费PDF全文

Carbon dioxide-induced ocean acidification is predicted to have major implications for marine life, but the research focus to date has been on direct effects. We demonstrate that acidified seawater can have indirect biological effects by disrupting the capability of organisms to express induced defences, hence, increasing their vulnerability to predation. The intertidal gastropod Littorina littorea produced thicker shells in the presence of predation (crab) cues but this response was disrupted at low seawater pH. This response was accompanied by a marked depression in metabolic rate (hypometabolism) under the joint stress of high predation risk and reduced pH. However, snails in this treatment apparently compensated for a lack of morphological defence, by increasing their avoidance behaviour, which, in turn, could affect their interactions with other organisms. Together, these findings suggest that biological effects from ocean acidification may be complex and extend beyond simple direct effects. 相似文献
6.
Michael J. Sheriff Melanie M. Richter C. Loren Buck Brian M. Barnes 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1624)
Many studies have addressed the effects of climate change on species as a whole; however, few have examined the possibility of sex-specific differences. To understand better the impact that changing patterns of snow-cover have on an important resident Arctic mammal, we investigated the long-term (13 years) phenology of hibernating male arctic ground squirrels living at two nearby sites in northern Alaska that experience significantly different snow-cover regimes. Previously, we demonstrated that snow-cover influences the timing of phenological events in females. Our results here suggest that the end of heterothermy in males is influenced by soil temperature and an endogenous circannual clock, but timing of male emergence from hibernation is influenced by the timing of female emergence. Males at both sites, Atigun and Toolik, end heterothermy on the same date in spring, but remain in their burrows while undergoing reproductive maturation. However, at Atigun, where snowmelt and female emergence occur relatively early, males emerge 8 days earlier than those at Toolik, maintaining a 12-day period between male and female emergence found at each site, but reducing the pre-emergence euthermic period that is critical for reproductive maturation. This sensitivity in timing of male emergence to female emergence will need to be matched by phase shifts in the circannual clock and responsiveness to environmental factors that time the end of heterothermy, if synchrony in reproductive readiness between the sexes is to be preserved in a rapidly changing climate. 相似文献
7.
Under global change, populations have four possible responses: ‘migrate, acclimate, adapt or die’ (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol.
17, 167–178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature
3, 298–230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells. 相似文献
8.
Swimming against the tide: resilience of a riverine turtle to recurrent extreme environmental events
Abigail M. Jergenson David A. W. Miller Lorin A. Neuman-Lee Daniel A. Warner Fredric J. Janzen 《Biology letters》2014,10(3)
Extreme environmental events (EEEs) are likely to exert deleterious effects on populations. From 1996 to 2012 we studied the nesting dynamics of a riverine population of painted turtles (Chrysemys picta) that experienced seven years with significantly definable spring floods. We used capture–mark–recapture methods to estimate the relationships between more than 5 m and more than 6 m flood events and population parameters. Contrary to expectations, flooding was not associated with annual differences in survival, recruitment or annual population growth rates of the adult female segment of the population. These findings suggest that female C. picta exhibit resiliency to key EEE, which are expected to increase in frequency under climate change. 相似文献
9.
R. Cunning R. N. Silverstein A. C. Baker 《Proceedings. Biological sciences / The Royal Society》2015,282(1809)
Dynamic symbioses may critically mediate impacts of climate change on diverse organisms, with repercussions for ecosystem persistence in some cases. On coral reefs, increases in heat-tolerant symbionts after thermal bleaching can reduce coral susceptibility to future stress. However, the relevance of this adaptive response is equivocal owing to conflicting reports of symbiont stability and change. We help reconcile this conflict by showing that change in symbiont community composition (symbiont shuffling) in Orbicella faveolata depends on the disturbance severity and recovery environment. The proportion of heat-tolerant symbionts dramatically increased following severe experimental bleaching, especially in a warmer recovery environment, but tended to decrease if bleaching was less severe. These patterns can be explained by variation in symbiont performance in the changing microenvironments created by differentially bleached host tissues. Furthermore, higher proportions of heat-tolerant symbionts linearly increased bleaching resistance but reduced photochemical efficiency, suggesting that any change in community structure oppositely impacts performance and stress tolerance. Therefore, even minor symbiont shuffling can adaptively benefit corals, although fitness effects of resulting trade-offs are difficult to predict. This work helps elucidate causes and consequences of dynamism in symbiosis, which is critical to predicting responses of multi-partner symbioses such as O. faveolata to environmental change. 相似文献
10.
Luigi Vezzulli Ingrid Brettar Elisabetta Pezzati Philip C Reid Rita R Colwell Manfred G H?fle Carla Pruzzo 《The ISME journal》2012,6(1):21-30
The long-term effects of ocean warming on prokaryotic communities are unknown because of lack of historical data. We overcame this gap by applying a retrospective molecular analysis to the bacterial community on formalin-fixed samples from the historical Continuous Plankton Recorder archive, which is one of the longest and most geographically extensive collections of marine biological samples in the world. We showed that during the last half century, ubiquitous marine bacteria of the Vibrio genus, including Vibrio cholerae, increased in dominance within the plankton-associated bacterial community of the North Sea, where an unprecedented increase in bathing infections related to these bacteria was recently reported. Among environmental variables, increased sea surface temperature explained 45% of the variance in Vibrio data, supporting the view that ocean warming is favouring the spread of vibrios and may be the cause of the globally increasing trend in their associated diseases. 相似文献
11.
Kevin J. Flynn Darren R. Clark Glen Wheeler 《Proceedings. Biological sciences / The Royal Society》2016,283(1833)
Coccolithophorids are enigmatic plankton that produce calcium carbonate coccoliths, which over geological time have buried atmospheric CO2 into limestone, changing both the atmosphere and geology of the Earth. However, the role of coccoliths for the proliferation of these organisms remains unclear; suggestions include roles in anti-predation, enhanced photosynthesis and sun-screening. Here we test the hypothesis that calcification stabilizes the pH of the seawater proximate to the organisms, providing a level of acidification countering the detrimental basification that occurs during net photosynthesis. Such bioengineering provides a more stable pH environment for growth and fits the empirical evidence for changes in rates of calcification under different environmental conditions. Under this scenario, simulations suggest that the optimal production ratio of inorganic to organic particulate C (PIC : POCprod) will be lower (by approx. 20%) with ocean acidification and that overproduction of coccoliths in a future acidified ocean, where pH buffering is weaker, presents a risk to calcifying cells. 相似文献
12.
Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara? 总被引:3,自引:0,他引:3
Mitchell NJ Kearney MR Nelson NJ Porter WP 《Proceedings. Biological sciences / The Royal Society》2008,275(1648):2185-2193
How will climate change affect species'' reproduction and subsequent survival? In many egg-laying reptiles, the sex of offspring is determined by the temperature experienced during a critical period of embryonic development (temperature-dependent sex determination, TSD). Increasing air temperatures are likely to skew offspring sex ratios in the absence of evolutionary or plastic adaptation, hence we urgently require means for predicting the future distributions of species with TSD. Here we develop a mechanistic model that demonstrates how climate, soil and topography interact with physiology and nesting behaviour to determine sex ratios of tuatara, cold-climate reptiles from New Zealand with an unusual developmental biology. Under extreme regional climate change, all-male clutches would hatch at 100% of current nest sites of the rarest species, Sphenodon guntheri, by the mid-2080s. We show that tuatara could behaviourally compensate for the male-biasing effects of warmer air temperatures by nesting later in the season or selecting shaded nest sites. Later nesting is, however, an unlikely response to global warming, as many oviparous species are nesting earlier as the climate warms. Our approach allows the assessment of the thermal suitability of current reserves and future translocation sites for tuatara, and can be readily modified to predict climatic impacts on any species with TSD. 相似文献
13.
Background and Aims
Altitudinal timberlines are thought to move upward by global warming, a crucial topic in ecology. Tall tree species (the conifer Abies mariesii and the deciduous broad-leaved Betula ermanii) dominate the sub-alpine zone between 1600 and 2500 m a.s.l., the timberline, on Mount Norikura in central Japan. Dwarf pine Pinus pumila dominates above the timberline to near the summit (3026 m a.s.l.). This study evaluated how the timberline formed on Mount Norikura by examining altitudinal changes in stand structure and dynamics around the timberline.Methods
One hundred and twenty-five plots of 10 m × 10 m were established around the timberline (2350–2600 m a.s.l.). Trunk diameter growth rate during 6 years was examined for A. mariesii, B. ermanii and P. pumila. Mortality during this period and mechanical damage scars on the trunks and branches due to strong wind and snow were examined for A. mariesii only.Key Results
The density, maximum trunk height and diameter of A. mariesii in plots decreased with altitude. The maximum trunk height of B. ermanii decreased with altitude, but density and maximum trunk diameter did not decrease. In contrast, the density of P. pumila abruptly increased from around the timberline. A strong negative correlation was found between the densities of P. pumila and tall tree species, indicating their interspecific competition. Trunk diameter growth rates of A. mariesii and B. ermanii did not decrease with altitude, suggesting that these two tall tree species can grow at the timberline. The ratio of trees with mechanical damage scars increased with altitude for A. mariesii, a tendency more conspicuous for larger trees. The mortality of larger A. mariesii was also greater at higher altitude. Tall tree species may not increase their trunk height and survive around the timberline because of mechanical damage.Conclusions
This study suggests that the altitudinal location of the timberline is mainly affected by mechanical damage due to strong wind and snow rather than by growth limitation due to low temperature. Therefore, the timberline would not move upward even under global warming if these growth and mortality characteristics do not change for a long time. 相似文献14.
15.
A recent increase in sea temperature has established a new ecosystem dynamic regime in the North Sea. Climate-induced changes in decapods have played an important role. Here, we reveal a coincident increase in the abundance of swimming crabs and lesser black-backed gull colonies in the North Sea, both in time and in space. Swimming crabs are an important food source for lesser black-backed gulls during the breeding season. Inhabiting the land, but feeding mainly at sea, lesser black-backed gulls provide a link between marine and terrestrial ecosystems, since the bottom-up influence of allochthonous nutrient input from seabirds to coastal soils can structure the terrestrial food web. We, therefore, suggest that climate-driven changes in trophic interactions in the marine food web may also have ensuing ramifications for the coastal ecology of the North Sea. 相似文献
16.
Henrique F Santos Flávia L Carmo Gustavo Duarte Francisco Dini-Andreote Clovis B Castro Alexandre S Rosado Jan Dirk van Elsas Raquel S Peixoto 《The ISME journal》2014,8(11):2272-2279
Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean''s biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs. 相似文献
17.
Lake warming favours small-sized planktonic diatom species 总被引:3,自引:0,他引:3
Winder M Reuter JE Schladow SG 《Proceedings. Biological sciences / The Royal Society》2009,276(1656):427-435
Diatoms contribute to a substantial portion of primary production in the oceans and many lakes. Owing to their relatively heavy cell walls and high nutrient requirements, planktonic diatoms are expected to decrease with climate warming because of reduced nutrient redistribution and increasing sinking velocities. Using a historical dataset, this study shows that diatoms were able to maintain their biovolume with increasing stratification in Lake Tahoe over the last decades; however, the diatom community structure changed. Increased stratification and reduced nitrogen to phosphorus ratios selected for small-celled diatoms, particularly within the Cyclotella genus. An empirical model showed that a shift in phytoplankton species composition and cell size was consistent within different depth strata, indicating that altered nutrient concentrations were not responsible for the change. The increase in small-celled species was sufficient to decrease the average diatom size and thus sinking velocity, which strongly influences energy transfer through the food web and carbon cycling. Our results show that within the diverse group of diatoms, small-sized species with a high surface area to volume ratio were able to adapt to a decrease in mixing intensity, supporting the hypotheses that abiotic drivers affect the size structure of planktonic communities and that warmer climate favours small-sized diatom cells. 相似文献
18.
Andrea Egizi Nina H. Fefferman Dina M. Fonseca 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1665)
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics. 相似文献
19.
Nadiah Pardede Kristensen Jacob Johansson J?rgen Ripa Niclas Jonzén 《Proceedings. Biological sciences / The Royal Society》2015,282(1807)
In migratory birds, arrival date and hatching date are two key phenological markers that have responded to global warming. A body of knowledge exists relating these traits to evolutionary pressures. In this study, we formalize this knowledge into general mathematical assumptions, and use them in an ecoevolutionary model. In contrast to previous models, this study novelty accounts for both traits—arrival date and hatching date—and the interdependence between them, revealing when one, the other or both will respond to climate. For all models sharing the assumptions, the following phenological responses will occur. First, if the nestling-prey peak is late enough, hatching is synchronous with, and arrival date evolves independently of, prey phenology. Second, when resource availability constrains the length of the pre-laying period, hatching is adaptively asynchronous with prey phenology. Predictions for both traits compare well with empirical observations. In response to advancing prey phenology, arrival date may advance, remain unchanged, or even become delayed; the latter occurring when egg-laying resources are only available relatively late in the season. The model shows that asynchronous hatching and unresponsive arrival date are not sufficient evidence that phenological adaptation is constrained. The work provides a framework for exploring microevolution of interdependent phenological traits. 相似文献
20.
Catherine R. M. Attard Luciano B. Beheregaray K. Curt S. Jenner Peter C. Gill Micheline-Nicole M. Jenner Margaret G. Morrice Peter R. Teske Luciana M. M?ller 《Biology letters》2015,11(5)
Unusually low genetic diversity can be a warning of an urgent need to mitigate causative anthropogenic activities. However, current low levels of genetic diversity in a population could also be due to natural historical events, including recent evolutionary divergence, or long-term persistence at a small population size. Here, we determine whether the relatively low genetic diversity of pygmy blue whales (Balaenoptera musculus brevicauda) in Australia is due to natural causes or overexploitation. We apply recently developed analytical approaches in the largest genetic dataset ever compiled to study blue whales (297 samples collected after whaling and representing lineages from Australia, Antarctica and Chile). We find that low levels of genetic diversity in Australia are due to a natural founder event from Antarctic blue whales (Balaenoptera musculus intermedia) that occurred around the Last Glacial Maximum, followed by evolutionary divergence. Historical climate change has therefore driven the evolution of blue whales into genetically, phenotypically and behaviourally distinct lineages that will likely be influenced by future climate change. 相似文献