首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mammalian mitochondrial ribosome (mitoribosome) is a highly protein-rich particle in which almost half of the rRNA contained in the bacterial ribosome is replaced with proteins. It is known that mitochondrial translation factors can function on both mitochondrial and Escherichia coli ribosomes, indicating that protein components in the mitoribosome compensate the reduced rRNA chain to make a bacteria-type ribosome. To elucidate the molecular basis of this compensation, we analyzed bovine mitoribosomal large subunit proteins; 31 proteins were identified including 15 newly identified proteins with their cDNA sequences from human and mouse. The results showed that the proteins with binding sites on rRNA shortened or lost in the mitoribosome were enlarged when compared with the E. coli counterparts; this suggests the structural compensation of the rRNA deficit by the enlarged proteins in the mitoribosome.  相似文献   

3.
Human mitoribosomes are macromolecular complexes essential for translation of 11 mitochondrial mRNAs. The large and the small mitoribosomal subunits undergo a multistep maturation process that requires the involvement of several factors. Among these factors, GTP-binding proteins (GTPBPs) play an important role as GTP hydrolysis can provide energy throughout the assembly stages. In bacteria, many GTPBPs are needed for the maturation of ribosome subunits and, of particular interest for this study, ObgE has been shown to assist in the 50S subunit assembly. Here, we characterize the role of a related human Obg-family member, GTPBP5. We show that GTPBP5 interacts specifically with the large mitoribosomal subunit (mt-LSU) proteins and several late-stage mitoribosome assembly factors, including MTERF4:NSUN4 complex, MRM2 methyltransferase, MALSU1 and MTG1. Interestingly, we find that interaction of GTPBP5 with the mt-LSU is compromised in the presence of a non-hydrolysable analogue of GTP, implying a different mechanism of action of this protein in contrast to that of other Obg-family GTPBPs. GTPBP5 ablation leads to severe impairment in the oxidative phosphorylation system, concurrent with a decrease in mitochondrial translation and reduced monosome formation. Overall, our data indicate an important role of GTPBP5 in mitochondrial function and suggest its involvement in the late-stage of mt-LSU maturation.  相似文献   

4.
Despite being one of the most studied proteases in bacteria, very little is known about the role of ClpXP in mitochondria. We now present evidence that mammalian CLPP has an essential role in determining the rate of mitochondrial protein synthesis by regulating the level of mitoribosome assembly. Through a proteomic approach and the use of a catalytically inactive CLPP, we produced the first comprehensive list of possible mammalian ClpXP substrates involved in the regulation of mitochondrial translation, oxidative phosphorylation, and a number of metabolic pathways. We further show that the defect in mitoribosomal assembly is a consequence of the accumulation of ERAL1, a putative 12S rRNA chaperone, and novel ClpXP substrate. The presented data suggest that the timely removal of ERAL1 from the small ribosomal subunit is essential for the efficient maturation of the mitoribosome and a normal rate of mitochondrial translation.  相似文献   

5.
Chronic ethanol feeding is known to negatively impact hepatic energy metabolism. Previous studies have indicated that the underlying lesion responsible for this may lie at the level of the mitoribosome. The aim of this study was to characterize the structure of the hepatic mitoribosome in alcoholic male rats and their isocalorically paired controls. Our experiments revealed that chronic ethanol feeding resulted in a significant depletion of both structural (death-associated protein 3) and functional [elongation factor thermo unstable (EF-Tu)] mitoribosomal proteins. In addition, significant increases were found in nucleotide elongation factor thermo stable (EF-Ts) and structural mitochondrial ribosomal protein L12 (MRPL12). The increase in MRPL12 was found to correlate with an increase in the levels of the 39S large mitoribosomal subunit. These changes were accompanied by decreased levels of nuclear- and mitochondrially encoded respiratory subunits, decreased amounts of intact respiratory complexes, decreased hepatic ATP levels, and depressed mitochondrial translation. Mathematical modeling of ethanol-mediated changes in EF-Tu and EF-Ts using prederived kinetic data predicted that the ethanol-mediated decrease in EF-Tu levels could completely account for the impaired mitochondrial protein synthesis. In conclusion, chronic ethanol feeding results in a depletion of mitochondrial EF-Tu levels within the liver that is mathematically predicted to be responsible for the impaired mitochondrial protein synthesis seen in alcoholic animals.  相似文献   

6.
Protein composition of mitochondrial ribosomes of the yeast Saccharomyces cerevisiae was analysed by two-dimensional electrophoresis. The small (37S) mitoribosomal subunit contains 36 different polypeptides with molecular weights ranging from 10,000 to 60,000. The large (50S) subunit is composed of 41 proteins with molecular weights from 10,000 to 43,000. The molecular weights of mitoribosomal small and large subunits are 1.85 MDa and 2.35 MDa, respectively. Proteins represent 60-62% and 42-45% of the total mass of 37S and 50S subunits respectively. On the basis of the protein content and molecular weights of individual proteins we conclude that all mitoribosomal proteins are present in the mitoribosome in equimolar proportions.  相似文献   

7.
In order to determine the sites of synthesis of the proteins of the mammalian mitochondrial ribosome (mitoribosome), bovine (MDBK) cells were labeled with [35S]methionine in the presence of inhibitors of mitochondrial and cytoplasmic protein synthesis. Labeling in the absence of cytoplasmic protein synthesis produced a "blank" fluorogram, indicating that there is no mitochondrial product. Additionally, incorporation of [35S]methionine into the enumerated mitoribosomal proteins continued in the absence of mitochondrial protein synthesis. Finally, it was demonstrated that mitoribosomal proteins can be both translated and assembled into complete mitoribosomes in the absence of mitochondrial protein synthesis. These results indicate that in mammals, as opposed to lower eukaryotes, all of the mitoribosomal proteins are products of cytoplasmic protein synthesis.  相似文献   

8.
We demonstrate here that mitoribosomal protein synthesis, responsible for the synthesis of oxidative phosphorylation (OXPHOS) subunits encoded by the mitochondrial genome, occurs at high levels during glycolysis fermentation and in a manner uncoupled from OXPHOS complex assembly regulation. Furthermore, we provide evidence that the mitospecific domain of Mrp7 (bL27), a mitoribosomal component, is required to maintain mitochondrial protein synthesis during fermentation but is not required under respiration growth conditions. Maintaining mitotranslation under high-glucose-fermentation conditions also involves Mam33 (p32/gC1qR homologue), a binding partner of Mrp7’s mitospecific domain, and together they confer a competitive advantage for a cell’s ability to adapt to respiration-based metabolism when glucose becomes limiting. Furthermore, our findings support that the mitoribosome, and specifically the central protuberance region, may be differentially regulated and/or assembled, under the different metabolic conditions of fermentation and respiration. On the basis of our findings, we propose that the purpose of mitotranslation is not limited to the assembly of OXPHOS complexes, but also plays a role in mitochondrial signaling critical for switching cellular metabolism from a glycolysis- to a respiration-based state.  相似文献   

9.
Reconstructing the evolution of the mitochondrial ribosomal proteome   总被引:4,自引:1,他引:3  
For production of proteins that are encoded by the mitochondrial genome, mitochondria rely on their own mitochondrial translation system, with the mitoribosome as its central component. Using extensive homology searches, we have reconstructed the evolutionary history of the mitoribosomal proteome that is encoded by a diverse subset of eukaryotic genomes, revealing an ancestral ribosome of alpha-proteobacterial descent that more than doubled its protein content in most eukaryotic lineages. We observe large variations in the protein content of mitoribosomes between different eukaryotes, with mammalian mitoribosomes sharing only 74 and 43% of its proteins with yeast and Leishmania mitoribosomes, respectively. We detected many previously unidentified mitochondrial ribosomal proteins (MRPs) and found that several have increased in size compared to their bacterial ancestral counterparts by addition of functional domains. Several new MRPs have originated via duplication of existing MRPs as well as by recruitment from outside of the mitoribosomal proteome. Using sensitive profile–profile homology searches, we found hitherto undetected homology between bacterial and eukaryotic ribosomal proteins, as well as between fungal and mammalian ribosomal proteins, detecting two novel human MRPs. These newly detected MRPs constitute, along with evolutionary conserved MRPs, excellent new screening targets for human patients with unresolved mitochondrial oxidative phosphorylation disorders.  相似文献   

10.
Mitoribosomes consist of ribosomal RNA and protein components, coordinated assembly of which is critical for function. We used mitoribosomes from Trypanosoma brucei with reduced RNA and increased protein mass to provide insights into the biogenesis of the mitoribosomal large subunit. Structural characterization of a stable assembly intermediate revealed 22 assembly factors, some of which have orthologues/counterparts/homologues in mammalian genomes. These assembly factors form a protein network that spans a distance of 180 Å, shielding the ribosomal RNA surface. The central protuberance and L7/L12 stalk are not assembled entirely and require removal of assembly factors and remodeling of the mitoribosomal proteins to become functional. The conserved proteins GTPBP7 and mt‐EngA are bound together at the subunit interface in proximity to the peptidyl transferase center. A mitochondrial acyl‐carrier protein plays a role in docking the L1 stalk, which needs to be repositioned during maturation. Additional enzymatically deactivated factors scaffold the assembly while the exit tunnel is blocked. Together, this extensive network of accessory factors stabilizes the immature sites and connects the functionally important regions of the mitoribosomal large subunit.  相似文献   

11.
M Mieszczak  W Zagórski 《Biochimie》1987,69(5):531-537
Yeast informational suppressors of mit- mutations coded for by nuclear (nam3-1, nam3-2) or by mitochondrial DNA (mim3-1) affect the mitoribosome. Nuclear mutations result in the appearance of an additional polypeptide called SI in the small mitoribosomal subunit. An identical polypeptide, not detected in the wild type 37S subunit, is present in crude preparations of mitoribosomes isolated from a mim3-1 suppressor carrying strain. Traces of the SI polypeptide may be found in highly purified small subunits from the mim3-1 strain. Therefore, mutations affecting either mitochondrial rRNA (mim3-1) or mitochondrial r-proteins (nam3-1, nam3-2) could be followed by similar changes in overall mitoribosome structure. This may explain the functional similarity of nuclear and mitochondrially coded suppressors.  相似文献   

12.
The 55 S mammalian mitochondrial ribosome (referred to hereafter as "mitoribosome") is protein-rich, containing nearly twice as much protein as the Escherichia coli ribosome. In order to produce soluble mitochondrial proteins and protein-deficient subribosomal particles for use in functional and structural studies, the proteins of bovine mitoribosomes were extracted by washing in a series of buffers containing increasing concentrations of LiCl as the only chaotropic agent. LiCl disruption is used in order to preserve the solubilized proteins in a substantially "native" configuration. The extraction mixtures were characterized by sucrose density gradient analysis and the compositions of the stripped protein and residual pellet fractions were determined by two-dimensional polyacrylamide gel electrophoresis. In order to analyze the behavior or individual proteins, the intensity of Coomassie blue stain for each protein was normalized against the intensity of stain for the same protein in a control sample. Buffers with 1, 2, and 4 M LiCl each extract a specific subset of mitoribosomal proteins, while another group of proteins remains in the residual pellet fraction. Although very few proteins are detected in only one condition, most proteins are specifically enriched in one fraction. This LiCl procedure, therefore, produces fractionated groups of mitoribosomal proteins which can be used directly as a source for those proteins in which they are enriched, or they can be used as a starting point in further purification procedures. In contrast to results with E. coli ribosomes, several mitoribosomal proteins remain core-associated, indicating a different structural organization in these ribosomes.  相似文献   

13.
The mammalian mitochondrial ribosome (mitoribosome) has a highly protein-rich composition with a small sedimentation coefficient of 55 S, consisting of 39 S large and 28 S small subunits. In the previous study, we analyzed 39 S large subunit proteins from bovine mitoribosome (Suzuki, T., Terasaki, M., Takemoto-Hori, C., Hanada, T., Ueda, T., Wada, A., and Watanabe, K. (2001) J. Biol. Chem. 276, 21724-21736). The results suggested structural compensation for the rRNA deficit through proteins of increased molecular mass in the mitoribosome. We report here the identification of 28 S small subunit proteins. Each protein was separated by radical-free high-reducing two-dimensional polyacrylamide gel electrophoresis and analyzed by liquid chromatography/mass spectrometry/mass spectrometry using electrospray ionization/ion trap mass spectrometer to identify cDNA sequence by expressed sequence tag data base searches in silico. Twenty one proteins from the small subunit were identified, including 11 new proteins along with their complete cDNA sequences from human and mouse. In addition to these proteins, three new proteins were also identified in the 55 S mitoribosome. We have clearly identified a mitochondrial homologue of S12, which is a key regulatory protein of translation fidelity and a candidate for the autosomal dominant deafness gene, DFNA4. The apoptosis-related protein DAP3 was found to be a component of the small subunit, indicating a new function for the mitoribosome in programmed cell death. In summary, we have mapped a total of 55 proteins from the 55 S mitoribosome on the two-dimensional polyacrylamide gels.  相似文献   

14.
ABSTRACT. The single name Pneumocystis carinii consists of an heterogeneous group of specific fungal organisms that colonize a very wide range of mammalian hosts. In the present study, mitochondrial large subunit (mtLSU) and small subunit (mtSSU) rRNA sequences of P. carinii organisms from 24 different mammalian species were compared. The mammals were included in six major groups: Primates (12 species). Rodents (5 species). Carnivores (3 species). Bats (1 species), Lagomorphs (1 species), Marsupials (1 species) and Ungulates (1 species). Direct sequencing of PCR products demonstrated that specific mtSSU and mtLSU rRNA Pneumocystis sequence could be attributed to each mammalian species. No animal harbored P. carinii f. sp. hominis. Comparison of combined mtLSU and mtSSU aligned sequences confirmed cospeciation of P. carinii and corresponding mammalian hosts. P. carinii organisms isolated from mammals of the same zoological group systematically clustered together. Within each cluster, the genetic divergence between P. carinii organisms varied in terms of the phylogenetic divergence existing among the corresponding host species. However, the relative position of P. carinii groups (rodent, carnivore or primate-derived P. carinii) could not be clearly determined. Further resolution will require the integration of additional sequence data.  相似文献   

15.
Protein translation is essential for all forms of life and is conducted by a macromolecular complex, the ribosome. Evolutionary changes in protein and RNA sequences can affect the 3D organization of structural features in ribosomes in different species. The most dramatic changes occur in animal mitochondria, whose genomes have been reduced and altered significantly. The RNA component of the mitochondrial ribosome (mitoribosome) is reduced in size, with a compensatory increase in protein content. Until recently, it was unclear how these changes affect the 3D structure of the mitoribosome. Here, we present a structural model of the large subunit of the mammalian mitoribosome developed by combining molecular modeling techniques with cryo-electron microscopic data at 12.1A resolution. The model contains 93% of the mitochondrial rRNA sequence and 16 mitochondrial ribosomal proteins in the large subunit of the mitoribosome. Despite the smaller mitochondrial rRNA, the spatial positions of RNA domains known to be involved directly in protein synthesis are essentially the same as in bacterial and archaeal ribosomes. However, the dramatic reduction in rRNA content necessitates evolution of unique structural features to maintain connectivity between RNA domains. The smaller rRNA sequence also limits the likelihood of tRNA binding at the E-site of the mitoribosome, and correlates with the reduced size of D-loops and T-loops in some animal mitochondrial tRNAs, suggesting co-evolution of mitochondrial rRNA and tRNA structures.  相似文献   

16.
Evolution of the mitochondrial protein synthetic machinery   总被引:4,自引:0,他引:4  
R Benne  P Sloof 《Bio Systems》1987,21(1):51-68
Comparative analysis of the components of the mitochondrial translational apparatus reveals a remarkable variability. For example the mitochondrial ribosomal rRNAs, display a three-fold difference in size in different organisms as a result of insertions or deletions, which affect specific areas of the rRNA molecule. This suggests that such areas are either not essential for mitoribosome function or that they can be replaced by proteins. Also mitochondrial tRNAs and mitoribosomal proteins are much less conserved than their cytoplasmic counterparts. Not only do the mitochondrial translational molecules vary in properties, also the location of the genes from which they are derived is not the same in all cases: mitochondrial tRNA genes which usually are found in the mtDNA, may have a nuclear location in protozoa and, conversely, only in fungi one finds a mitoribosomal protein gene in the organellar genome. The high rate of change of the components of the mitochondrial protein synthesizing machinery is accompanied by a number of unique features of the translation process: (i) the mitochondrial genetic code differs substantially from the standard code in a species-specific manner; (ii) special codon-anticodon recognition rules are followed; (iii) unusual mechanisms of translational initiation may exist. These observations suggest that the evolutionary pressures that have shaped the present day mitochondrial translational apparatus have been different in different organisms and also distinct from those acting on the cytoplasmic machinery. In spite of the interspecies variability, however, many features of the mitochondrial and bacterial protein synthetic apparatus show a clear resemblance, providing support for the hypothesis of a prokaryotic endosymbiont ancestry of mitochondria.  相似文献   

17.
Ribosome biogenesis in eukaryotic cells is a highly dynamic and complex process innately linked to cell proliferation. The assembly of ribosomes is driven by a myriad of biogenesis factors that shape pre‐ribosomal particles by processing and folding the ribosomal RNA and incorporating ribosomal proteins. Biochemical approaches allowed the isolation and characterization of pre‐ribosomal particles from Saccharomyces cerevisiae, which lead to a spatiotemporal map of biogenesis intermediates along the path from the nucleolus to the cytoplasm. Here, we cloned almost the entire set (~180) of ribosome biogenesis factors from the thermophilic fungus Chaetomium thermophilum in order to perform an in‐depth analysis of their protein–protein interaction network as well as exploring the suitability of these thermostable proteins for structural studies. First, we performed a systematic screen, testing about 80 factors for crystallization and structure determination. Next, we performed a yeast 2‐hybrid analysis and tested about 32,000 binary combinations, which identified more than 1000 protein–protein contacts between the thermophilic ribosome assembly factors. To exemplary verify several of these interactions, we performed biochemical reconstitution with the focus on the interaction network between 90S pre‐ribosome factors forming the ctUTP‐A and ctUTP‐B modules, and the Brix‐domain containing assembly factors of the pre‐60S subunit. Our work provides a rich resource for biochemical reconstitution and structural analyses of the conserved ribosome assembly machinery from a eukaryotic thermophile.  相似文献   

18.
Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP.  相似文献   

19.
20.
Nitric oxide associated-1 (NOA1) is an evolutionarily conserved guanosine triphosphate (GTP) binding protein that localizes predominantly to mitochondria in mammalian cells. On the basis of bioinformatic analysis, we predicted its possible involvement in ribosomal biogenesis, although this had not been supported by any experimental evidence. Here we determine NOA1 function through generation of knockout mice and in vitro assays. NOA1-deficient mice exhibit midgestation lethality associated with a severe developmental defect of the embryo and trophoblast. Primary embryonic fibroblasts isolated from NOA1 knockout embryos show deficient mitochondrial protein synthesis and a global defect of oxidative phosphorylation (OXPHOS). Additionally, Noa1–/– cells are impaired in staurosporine-induced apoptosis. The analysis of mitochondrial ribosomal subunits from Noa1–/– cells by sucrose gradient centrifugation and Western blotting showed anomalous sedimentation, consistent with a defect in mitochondrial ribosome assembly. Furthermore, in vitro experiments revealed that intrinsic NOA1 GTPase activity was stimulated by bacterial ribosomal constituents. Taken together, our data show that NOA1 is required for mitochondrial protein synthesis, likely due to its yet unidentified role in mitoribosomal biogenesis. Thus, NOA1 is required for such basal mitochondrial functions as adenosine triphosphate (ATP) synthesis and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号