首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The centriole in eukaryotes functions as the cell''s microtubule-organizing center (MTOC) to nucleate spindle assembly, and its biogenesis requires an evolutionarily conserved protein, SAS-6, which assembles the centriole cartwheel. Trypanosoma brucei, an early branching protozoan, possesses the basal body as its MTOC to nucleate flagellum biogenesis. However, little is known about the components of the basal body and their roles in basal body biogenesis and flagellum assembly. Here, we report that the T. brucei SAS-6 homolog, TbSAS-6, is localized to the mature basal body and the probasal body throughout the cell cycle. RNA interference (RNAi) of TbSAS-6 inhibited probasal body biogenesis, compromised flagellum assembly, and caused cytokinesis arrest. Surprisingly, overexpression of TbSAS-6 in T. brucei also impaired probasal body duplication and flagellum assembly, contrary to SAS-6 overexpression in humans, which produces supernumerary centrioles. Furthermore, we showed that depletion of T. brucei Polo-like kinase, TbPLK, or inhibition of TbPLK activity did not abolish TbSAS-6 localization to the basal body, in contrast to the essential role of Polo-like kinase in recruiting SAS-6 to centrioles in animals. Altogether, these results identified the essential role of TbSAS-6 in probasal body biogenesis and flagellum assembly and suggest the presence of a TbPLK-independent pathway governing basal body duplication in T. brucei.  相似文献   

2.
The Polo-like kinase (PLK) in Trypanosoma brucei plays multiple roles in basal body segregation, flagellum attachment, and cytokinesis. However, the mechanistic role of TbPLK remains elusive, mainly because most of its substrates are not known. Here, we report a new substrate of TbPLK, SPBB1, and its essential roles in T. brucei. SPBB1 was identified through yeast two-hybrid screening with the kinase-dead TbPLK as the bait. It interacts with TbPLK in vitro and in vivo, and is phosphorylated by TbPLK in vitro. SPBB1 localizes to both the mature basal body and the probasal body throughout the cell cycle, and co-localizes with TbPLK at the basal body during early cell cycle stages. RNAi against SPBB1 in procyclic trypanosomes inhibited basal body segregation, disrupted the new flagellum attachment zone filament, detached the new flagellum, and caused defective cytokinesis. Moreover, RNAi of SPBB1 confined TbPLK at the basal body and the bilobe structure, resulting in constitutive phosphorylation of TbCentrin2 at the bilobe. Altogether, these results identified a basal body protein as a TbPLK substrate and its essential role in promoting basal body segregation and flagellum attachment zone filament assembly for flagellum adhesion and cytokinesis initiation.  相似文献   

3.
Centrosomes consist of a centriole pair surrounded by pericentriolar material (PCM). Previous work suggested that centrioles are required to organize PCM to form a structurally stable organelle. Here, we characterize SAS-4, a centriole component in Caenorhabditis elegans. Like tubulin, SAS-4 is incorporated into centrioles during their duplication and remains stably associated thereafter. In the absence of SAS-4, centriole duplication fails. Partial depletion of SAS-4 results in structurally defective centrioles that contain reduced levels of SAS-4 and organize proportionally less PCM. Thus, SAS-4 is a centriole-associated component whose amount dictates centrosome size. These results provide novel insight into the poorly understood role of centrioles as centrosomal organizers.  相似文献   

4.
In Caenorhabditis elegans, five proteins are required for centriole duplication: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4. Functional orthologues of all but SAS-5 have been found in other species. In Drosophila melanogaster and humans, Sak/Plk4, DSas-6/hSas-6, and DSas-4/CPAP—orthologues of ZYG-1, SAS-6, and SAS-4, respectively—are required for centriole duplication. Strikingly, all three fly proteins can induce the de novo formation of centriole-like structures when overexpressed in unfertilized eggs. Here, we find that of eight candidate duplication factors identified in cultured fly cells, only two, Ana2 and Asterless (Asl), share this ability. Asl is now known to be essential for centriole duplication in flies, but no equivalent protein has been found in worms. We show that Ana2 is the likely functional orthologue of SAS-5 and that it is also related to the vertebrate STIL/SIL protein family that has been linked to microcephaly in humans. We propose that members of the SAS-5/Ana2/STIL family of proteins are key conserved components of the centriole duplication machinery.  相似文献   

5.
Centrioles and basal bodies are structurally related organelles composed of nine microtubule (MT) triplets. Studies performed in Caenorhabditis elegans embryos have shown that centriole duplication takes place in sequential way, in which different proteins are recruited in a specific order to assemble a procentriole. ZYG-1 initiates centriole duplication by triggering the recruitment of a complex of SAS-5 and SAS-6, which then recruits the final player, SAS-4, to allow the incorporation of MT singlets. It is thought that a similar mechanism (that also involves additional proteins) is present in other animal cells, but it remains to be investigated whether the same players and their ascribed functions are conserved during basal body duplication in cells that exclusively contain basal bodies. To investigate this question, we have used the multiciliated protist Paramecium tetraurelia. Here we show that in the absence of PtSas4, two types of defects in basal body duplication can be identified. In the majority of cases, the germinative disk and cartwheel, the first structures assembled during duplication, are not detected. In addition, if daughter basal bodies were formed, they invariably had defects in MT recruitment. Our results suggest that PtSas4 has a broader function than its animal orthologues.  相似文献   

6.
Li Z  Wang CC 《Eukaryotic cell》2008,7(11):1941-1950
Kinetoplastid membrane protein 11 (KMP-11) has been identified as a flagellar protein and is conserved among kinetoplastid parasites, but its potential function remains unknown. In a recent study, we identified KMP-11 as a microtubule-bound protein localizing to the flagellum as well as the basal body in both procyclic and bloodstream forms of Trypanosoma brucei (Z. Li, J. H. Lee, F. Chu, A. L. Burlingame, A. Gunzl, and C. C. Wang, PLoS One 3:e2354, 2008). Silencing of KMP-11 by RNA interference inhibited basal body segregation and cytokinesis in both forms and resulted in multiple nuclei of various sizes, indicating a continuous, albeit somewhat defective, nuclear division while cell division was blocked. KMP-11 knockdown in the procyclic form led to severely compromised formation of the new flagellum attachment zone (FAZ) and detachment of the newly synthesized flagellum. However, a similar phenotype was not observed in the bloodstream form depleted of KMP-11. Thus, KMP-11 is a flagellar protein playing critical roles in regulating cytokinesis in both forms of the trypanosomes. Its distinct roles in regulating FAZ formation in the two forms may provide a clue to the different mechanisms of cytokinetic initiation in procyclic and bloodstream trypanosomes.  相似文献   

7.
Trypanosoma brucei uses multiple mechanisms to evade detection by its insect and mammalian hosts. The flagellar pocket (FP) is the exclusive site of uptake from the environment in trypanosomes and shields receptors from exposure to the host. The FP neck is tightly associated with the flagellum via a series of cytoskeletal structures that include the hook complex (HC) and the centrin arm. These structures are implicated in facilitating macromolecule entry into the FP and nucleating the flagellum attachment zone (FAZ), which adheres the flagellum to the cell surface. TbSmee1 (Tb927.10.8820) is a component of the HC and a putative substrate of polo‐like kinase (TbPLK), which is essential for centrin arm and FAZ duplication. We show that depletion of TbSmee1 in the insect‐resident (procyclic) form of the parasite causes a 40% growth decrease and the appearance of multinucleated cells that result from defective cytokinesis. Cells lacking TbSmee1 contain HCs with aberrant morphology and show delayed uptake of both fluid‐phase and membrane markers. TbPLK localization to the tip of the new FAZ is also blocked. These results argue that TbSmee1 is necessary for maintaining HC morphology, which is important for the parasite's ability to take up molecules from its environment.  相似文献   

8.
Centrioles play a crucial role in mitotic spindle assembly and duplicate precisely once per cell cycle. In worms, flies, and humans, centriole assembly is dependent upon a key regulatory kinase (ZYG-1/Sak/Plk4) and its downstream effectors SAS-5 and SAS-6. Here we report a role for protein phosphatase 2A (PP2A) in centriole duplication. We find that the PP2A catalytic subunit LET-92, the scaffolding subunit PAA-1, and the B55 regulatory subunit SUR-6 function together to positively regulate centriole assembly. In PP2A-SUR-6-depleted embryos, the levels of ZYG-1 and SAS-5 are reduced and the ZYG-1- and SAS-5-dependent recruitment of SAS-6 to the nascent centriole fails. We show that PP2A physically associates with SAS-5 in vivo and that inhibiting proteolysis can rescue SAS-5 levels and the centriole duplication defect of PP2A-depleted embryos. Together, our findings indicate that PP2A-SUR-6 promotes centriole assembly by protecting ZYG-1 and SAS-5 from degradation.  相似文献   

9.
The mechanisms that ensure centrosome duplication are poorly understood. In Caenorhabditis elegans, ZYG-1, SAS-4, SAS-5 and SPD-2 are required for centriole formation. However, it is unclear whether these proteins have functional homologues in other organisms. Here, we identify SAS-6 as a component that is required for daughter centriole formation in C. elegans. SAS-6 is a coiled-coil protein that is recruited to centrioles at the onset of the centrosome duplication cycle. Our analysis indicates that SAS-6 and SAS-5 associate and that this interaction, as well as ZYG-1 function, is required for SAS-6 centriolar recruitment. SAS-6 is the founding member of an evolutionarily conserved protein family that contains the novel PISA motif. We investigated the function of the human homologue of SAS-6. GFP-HsSAS-6 localizes to centrosomes and its overexpression results in excess foci-bearing centriolar markers. Furthermore, siRNA-mediated inactivation of HsSAS-6 in U2OS cells abrogates centrosome overduplication following aphidicolin treatment and interferes with the normal centrosome duplication cycle. Therefore, HsSAS-6 is also required for centrosome duplication, indicating that the function of SAS-6-related proteins has been widely conserved during evolution.  相似文献   

10.
The mechanisms governing centrosome duplication remain poorly understood. We identified a gene called sas-4 that is essential for this process in C. elegans. SAS-4 encodes a predicted coiled-coil protein that localizes to a tiny dot in the center of centrosomes throughout the cell cycle. FRAP experiments with GFP-SAS-4 transgenic embryos reveal that SAS-4 is recruited to the centrosome once per cell cycle, at the time of organelle duplication. Additional evidence indicates that SAS-4 is recruited to the daughter centriole or a closely associated structure. These findings identify SAS-4 recruitment as a key step in the centrosome duplication cycle.  相似文献   

11.
Ciliated epithelial cells have the unique ability to generate hundreds of centrioles during differentiation. We used centrosomal proteins as molecular markers in cultured mouse tracheal epithelial cells to understand this process. Most centrosomal proteins were up-regulated early in ciliogenesis, initially appearing in cytoplasmic foci and then incorporated into centrioles. Three candidate proteins were further characterized. The centrosomal component SAS-6 localized to basal bodies and the proximal region of the ciliary axoneme, and depletion of SAS-6 prevented centriole assembly. The intraflagellar transport component polaris localized to nascent centrioles before incorporation into cilia, and depletion of polaris blocked axoneme formation. The centriolar satellite component PCM-1 colocalized with centrosomal components in cytoplasmic granules surrounding nascent centrioles. Interfering with PCM-1 reduced the amount of centrosomal proteins at basal bodies but did not prevent centriole assembly. This system will help determine the mechanism of centriole formation in mammalian cells and how the limitation on centriole duplication is overcome in ciliated epithelial cells.  相似文献   

12.
13.
Trypanosomes possess a single flagellum that is attached to their cell body via the flagellum attachment zone (FAZ). The FAZ is composed of two structures: a cytoplasmic filament complex and four microtubules situated next to it. There is a complex transmembrane crosslinking of this FAZ to the paraflagellar rod (PFR) and axoneme within the flagellum. We have partially purified the FAZ complex and have produced monoclonal antibodies both against the FAZ and the paraflagellar rod. The two antibodies against the FAZ (L3B2 and L6B3) recognise the cytoplasmic filament in immunofluorescence and in immunoelectron microscopy. On western blot, they detect a doublet of high molecular weight (M(r) 200,000). Two anti-PFR antibodies (L13D6 and L8C4) recognise the paraflagellar rod in immunofluorescence, but show a difference on Western blot: L13D6 recognises both major PFR proteins, whereas L8C4 is specific for only one of them. Using these new antibodies we have shown that although the growth of both cytoplasmic FAZ filament and external PFR are related, their growth initiates at different time points during the cell cycle and the two structures elongate at distinct rates.  相似文献   

14.
Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania.  相似文献   

15.
In the protist parasite Trypanosoma brucei, the single Polo-like kinase (TbPLK) controls the inheritance of a suite of organelles that help position the parasite''s single flagellum. These include the basal bodies, the bilobe, and the flagellar attachment zone (FAZ). TbCentrin2 was previously shown to be a target for TbPLK in vitro, and this is extended in this study to in vivo studies, highlighting a crucial role for serine 54 in the N-terminal domain. Duplication of the bilobe correlates with the presence of TbPLK and phospho-TbCentrin2, identified using phosphospecific antiserum. Mutation of S54 leads to slow growth (S54A) or no growth (S54D), the latter suggesting that dephosphorylation is needed to complete bilobe duplication and subsequent downstream events necessary for flagellum inheritance.  相似文献   

16.
Vaughan S  Kohl L  Ngai I  Wheeler RJ  Gull K 《Protist》2008,159(1):127-136
The flagellum is attached along the length of the cell body in the protozoan parasite Trypanosoma brucei and is a defining morphological feature of this parasite. The flagellum attachment zone (FAZ) is a complex structure and has been characterised morphologically as comprising a FAZ filament structure and the specialised microtubule quartet (MtQ) plus the specialised areas of flagellum: plasma membrane attachment. Unfortunately, we have no information as to the molecular identity of the FAZ filament components. Here, by screening an expression library with the monoclonal antibody L3B2 which identifies the FAZ filament we identify a novel repeat containing protein FAZ1. It is kinetoplastid-specific and provides the first molecular component of the FAZ filament. Knockdown of FAZ1 by RNA interference (RNAi) results in the assembly of a compromised FAZ and defects in flagellum attachment and cytokinesis in procyclic trypanosomes. The complexity of FAZ structure and assembly is revealed by the use of other monoclonal antibody markers illustrating that FAZ1 is only one protein of a complex structure. The cytokinesis defects provide further evidence for the role of an attached flagellum in cellular morphogenesis in these trypanosomes.  相似文献   

17.
Centrosome duplication occurs under strict spatiotemporal regulation once per cell cycle, and it begins with cartwheel assembly and daughter centriole biogenesis at the lateral sites of the mother centrioles. However, although much of this process is understood, how centrosome duplication is initiated remains unclear. Here, we show that cartwheel assembly followed by daughter centriole biogenesis is initiated on the NEDD1-containing layer of the pericentriolar material (PCM) by the recruitment of SAS-6 to the mother centriole under the regulation of PLK4. We found that PLK4-mediated phosphorylation of NEDD1 at its S325 amino acid residue directly promotes both NEDD1 binding to SAS-6 and recruiting SAS-6 to the centrosome. Overexpression of phosphomimicking NEDD1 mutant S325E promoted cartwheel assembly and daughter centriole biogenesis initiations, whereas overexpression of nonphosphorylatable NEDD1 mutant S325A abolished the initiations. Collectively, our results demonstrate that PLK4-regulated NEDD1 facilitates initiation of the cartwheel assembly and of daughter centriole biogenesis in mammals.  相似文献   

18.
《Trends in parasitology》2023,39(5):332-344
A key morphological feature of kinetoplastid parasites is the position and length of flagellum attachment to the cell body. This lateral attachment is mediated by the flagellum attachment zone (FAZ), a large complex cytoskeletal structure, which is essential for parasite morphogenesis and pathogenicity. Despite the complexity of the FAZ only two transmembrane proteins, FLA1 and FLA1BP, are known to interact and connect the flagellum to the cell body. Across the different kinetoplastid species, each only has a single FLA/FLABP pair, except in Trypanosoma brucei and Trypanosoma congolense where there has been an expansion of these genes. Here, we focus on the selection pressure behind the evolution of the FLA/FLABP proteins and the likely impact this will have on host–parasite interactions.  相似文献   

19.
The replication and segregation of organelles producing two identical daughter cells must be precisely controlled during the cell cycle progression of eukaryotes. In kinetoplastid flagellated protozoa, this includes the duplication of the single mitochondrion containing a network of DNA, known as the kinetoplast, and a flagellum that grows from a cytoplasmic basal body through the flagellar pocket compartment before emerging from the cell. Here, we show the morphological events and the timing of these events during the cell cycle of the epimastigote form of Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease. DNA staining, flagellum labeling, bromodeoxyuridine incorporation, and ultra-thin serial sections show that nuclear replication takes 10% of the whole cell cycle time. In the middle of the G2 stage, the new flagellum emerges from the flagellar pocket and grows unattached to the cell body. While the new flagellum is still short, the kinetoplast segregates and mitosis occurs. The new flagellum reaches its final size during cytokinesis when a new cell body is formed. These precisely coordinated cell cycle events conserve the epimastigote morphology with a single nucleus, a single kinetoplast, and a single flagellum status of the interphasic cell.  相似文献   

20.
A novel protein in Caenorhabditis elegans, SAS-4, is a component of centrioles and is required for centriole duplication. Depletion of SAS-4 results in stunted centrioles and a smaller centrosome, suggesting a link to organelle size control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号