首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface electromyogram-controlled powered hand/wrist prostheses return partial upper-limb function to limb-absent persons. Typically, one degree of freedom (DoF) is controlled at a time, with mode switching between DoFs. Recent research has explored using large-channel EMG systems to provide simultaneous, independent and proportional (SIP) control of two joints—but such systems are not practical in current commercial prostheses. Thus, we investigated site selection of a minimum number of conventional EMG electrodes in an EMG-force task, targeting four sites for a two DoF controller. In a laboratory experiment with 10 able-bodied subjects and three limb-absent subjects, 16 electrodes were placed about the proximal forearm. Subjects produced 1-DoF and 2-DoF slowly force-varying contractions up to 30% maximum voluntary contraction (MVC). EMG standard deviation was related to forces via regularized regression. Backward stepwise selection was used to retain those progressively fewer electrodes that exhibited minimum error. For 1-DoF models using two retained electrodes (which mimics the current state of the art), subjects had average RMS errors of (depending on the DoF): 7.1–9.5% MVC for able-bodied and 13.7–17.1% MVC for limb-absent subjects. For 2-DoF models, subjects using four electrodes had errors on 1-DoF trials of 6.7–8.5% MVC for able-bodied and 11.9–14.0% MVC for limb-absent; and errors on 2-DoF trials of 9.9–11.2% MVC for able-bodied and 15.8–16.7% MVC for limb-absent subjects. For each model, retaining more electrodes did not statistically improve performance. The able-bodied results suggest that backward selection is a viable method for minimum error selection of as few as four electrode sites for these EMG-force tasks. Performance evaluation in a prosthesis control task is a necessary and logical next step for this site selection method.  相似文献   

2.
The objective of this study was to investigate the reciprocal influences of stance pattern (bilateral stance vs. unilateral stance) and thumb-index precision grip task (static target vs. dynamic target) on postural–suprapostural tasks by manipulating task-load. Fifteen healthy volunteers participated in four postural–suprapostural tasks, including static force-matching in bilateral/unilateral stance (BS_static; US_static), dynamic force-matching in bilateral/unilateral stance (BS_dynamic; US_dynamic), and two control tasks in bilateral and unilateral stances without a finger task. The normalized force error (NFE), reaction time (RT) of the finger tasks, and normalized change in center of pressure sway (ΔNCoP) were measured. For suprapostural task performance, a significant interaction effect between postural and suprapostural tasks on NFE of the finger tasks was noted (static: BS < US; dynamic: BS > US), but RT was not different among the four tasks. For postural task performance, negative ΔNCoP during unilateral stance indicated a spontaneous reduction in postural sway due to added force-matching. In contrast, addition of force-matching tended to increase postural sway during bilateral stance, but postural fluctuations decreased as task-load of suprapostural task increased (BS_dynamic < BS_static). In conclusion, performance of postural–suprapostural tasks was differently modulated by task-load increment. Our observations favored adaptive resource-sharing and implicit expansion of resource capacity for a postural task with a motor suprapostural goal.  相似文献   

3.
The aim of this study was to assess differences in physiological tremor amplitude of the hand between the dominant and non-dominant side of right-handed individuals. Mechanical loading of the hand and frequency analysis were used in an attempt to identify the physiological mechanisms involved in observed differences. Seventeen healthy right-handed adults participated in a single session where physiological tremor of the outstretched left and right hands was recorded under different loading conditions (0 g up to 5614 g). Physiological tremor amplitude was quantified through accelerometry and electromyographic (EMG) signals of wrist extensor and flexor muscles were also recorded. The main findings were: ~30% greater amplitude of fluctuations in acceleration for the non-dominant compared with the dominant hand, no difference in the frequency content of acceleration or demodulated EMG signals between dominant and non-dominant sides across all loads, and condition-dependent associations between the amplitude of fluctuations in acceleration and EMG amplitude and frequency content. These associations suggest a potential role of central modulation of neural activity to explain dominance-related differences in physiological tremor amplitude of the hand.  相似文献   

4.
Although the orientations of the hand and forearm vary for different wrist rehabilitation protocols, their effect on muscle forces has not been quantified. Physiologic simulators enable a biomechanical evaluation of the joint by recreating functional motions in cadaveric specimens. Control strategies used to actuate joints in physiologic simulators usually employ position or force feedback alone to achieve optimum load distribution across the muscles. After successful tests on a phantom limb, unique combinations of position and force feedback – hybrid control and cascade control – were used to simulate multiple cyclic wrist motions of flexion-extension, radioulnar deviation, dart thrower’s motion, and circumduction using six muscles in ten cadaveric specimens. Low kinematic errors and coefficients of variation of muscle forces were observed for planar and complex wrist motions using both novel control strategies. The effect of gravity was most pronounced when the hand was in the horizontal orientation, resulting in higher extensor forces (p < 0.017) and higher out-of-plane kinematic errors (p < 0.007), as compared to the vertically upward or downward orientations. Muscle forces were also affected by the direction of rotation during circumduction. The peak force of flexor carpi radialis was higher in clockwise circumduction (p = 0.017), while that of flexor carpi ulnaris was higher in anticlockwise circumduction (p = 0.013). Thus, the physiologic wrist simulator accurately replicated cyclic planar and complex motions in cadaveric specimens. Moreover, the dependence of muscle forces on the hand orientation and the direction of circumduction could be vital in the specification of such parameters during wrist rehabilitation.  相似文献   

5.
Previous studies have shown an association of visual demands during near work and increased activity of the trapezius muscle. Those studies were conducted under stationary postural conditions with fixed gaze and artificial visual load. The present study investigated the relationship between ciliary muscle contraction force and trapezius muscle activity across individuals during performance of a natural dynamic motor task under free gaze conditions. Participants (N = 11) tracked a moving visual target with a digital pen on a computer screen. Tracking performance, eye refraction and trapezius muscle activity were continuously measured. Ciliary muscle contraction force was computed from eye accommodative response. There was a significant Pearson correlation between ciliary muscle contraction force and trapezius muscle activity on the tracking side (0.78, p < 0.01) and passive side (0.64, p < 0.05). The study supports the hypothesis that high visual demands, leading to an increased ciliary muscle contraction during continuous eye–hand coordination, may increase trapezius muscle tension and thus contribute to the development of musculoskeletal complaints in the neck–shoulder area. Further experimental studies are required to clarify whether the relationship is valid within each individual or may represent a general personal trait, when individuals with higher eye accommodative response tend to have higher trapezius muscle activity.  相似文献   

6.
The well-documented observation of bilateral performance gains following unilateral motor training, a phenomenon known as cross-limb transfer, has important implications for rehabilitation. It has recently been shown that provision of a mirror image of the active hand during unilateral motor training has the capacity to enhance the efficacy of this phenomenon when compared to training without augmented visual feedback (i.e., watching the passive hand), possibly via action observation effects [1]. The current experiment was designed to confirm whether mirror-visual feedback (MVF) during motor training can indeed elicit greater performance gains in the untrained hand compared to more standard visual feedback (i.e., watching the active hand). Furthermore, discussing the mechanisms underlying any such MVF-induced behavioural effects, we suggest that action observation and the cross-activation hypothesis may both play important roles in eliciting cross-limb transfer. Eighty participants practiced a fast-as-possible two-ball rotation task with their dominant hand. During training, three different groups were provided with concurrent visual feedback of the active hand, inactive hand or a mirror image of the active hand with a fourth control group receiving no training. Pre- and post-training performance was measured in both hands. MVF did not increase the extent of training-induced performance changes in the untrained hand following unilateral training above and beyond those observed for other types of feedback. The data are consistent with the notion that cross-limb transfer, when combined with MVF, is mediated by cross-activation with action observation playing a less unique role than previously suggested. Further research is needed to replicate the current and previous studies to determine the clinical relevance and potential benefits of MVF for cases that, due to the severity of impairment, rely on unilateral training programmes of the unaffected limb to drive changes in the contralateral affected limb.  相似文献   

7.
The fact that humans can execute accurate movements and generate precise muscle forces is very important for hand function. Target-tracking tasks or target-matching tasks are often executed under combined visual and somatosensory feedback. When visual feedback is removed, subjects have to depend on their perception of force. The objective of the present study was to estimate the effects of aging on the perception of a pinch force produced by the thumb and index finger. In a first set of trials, young (n = 12, age = 25.3 +/- 2.4 years) and elderly (n = 12, age = 71.5 +/- 3.3 years) healthy individuals were asked to reproduce pinch forces which were equivalent to 5%, 20%, and 40% of their maximal pinch force (MPF). Prior to the execution of these trials, the subjects were familiarized with the force levels by matching targets displayed on a screen. They were then asked to reproduce each of these forces without any visual or verbal feedback. The results showed a larger error in the reproduced force for the elderly subjects when compared with the young adults. However, this larger error was mainly due to an initial overshoot in the force to be reproduced, followed by a gradual decrease towards the appropriate force. This transient overshoot was rarely seen in the performance of the younger subjects. In a second set of trials, the same subjects were asked to produce a pinch force of 5%, 20%, and 40% of MPF with 1 hand using visual feedback. They were also instructed to simultaneously apply a comparable pinch force with the other hand (without any feedback). For both young and older adults, the pinch forces produced by the 2 hands were the same. In addition, in both blocks of trials, hand dominance had no effects on the performance for all subjects. These results suggest that normal aging affects the production of force based on sensorimotor memory rather more than it affects comparative outputs from central descending commands.  相似文献   

8.
Visual feedback and non-visual information play different roles in tracking of an external target. This study explored the respective roles of the visual and non-visual information in eleven healthy volunteers who coupled the manual cursor to a rhythmically moving target of 0.5 Hz under three sensorimotor conditions: eye-alone tracking (EA), eye-hand tracking with visual feedback of manual outputs (EH tracking), and the same tracking without such feedback (EHM tracking). Tracking error, kinematic variables, and movement intermittency (saccade and speed pulse) were contrasted among tracking conditions. The results showed that EHM tracking exhibited larger pursuit gain, less tracking error, and less movement intermittency for the ocular plant than EA tracking. With the vision of manual cursor, EH tracking achieved superior tracking congruency of the ocular and manual effectors with smaller movement intermittency than EHM tracking, except that the rate precision of manual action was similar for both types of tracking. The present study demonstrated that visibility of manual consequences altered mutual relationships between movement intermittency and tracking error. The speed pulse metrics of manual output were linked to ocular tracking error, and saccade events were time-locked to the positional error of manual tracking during EH tracking. In conclusion, peripheral non-visual information is critical to smooth pursuit characteristics and rate control of rhythmic manual tracking. Visual information adds to eye-hand synchrony, underlying improved amplitude control and elaborate error interpretation during oculo-manual tracking.  相似文献   

9.
The present study investigated force–velocity and force–power relationships of bilateral and unilateral knee-hip extension movement in young and elderly women. Twelve healthy young (age, 19–31 yr) and 12 healthy elderly (age, 60–82 yr) women performed bilateral and unilateral knee-hip extension movements on the dynamometer against loads controlled by the servo system. Under the isotonic force condition, force–velocity relationships were measured. The maximum isometric force (Fmax), unloaded velocity (Vmax) and power output (Pmax) of the movements were calculated from extrapolating force–velocity and force–power relationships. Fmax and Pmax of bilateral and unilateral knee-hip extension movements were 20–30% lower in elderly than in young women. On the other hand, there were no significant differences in Vmax between young and elderly women and between bilateral and unilateral movements. Bilateral deficit was larger as the generation of force was larger in both young and elderly women. Also, bilateral deficit of Fmax and Pmax were not different between young and elderly women. The results were that lower maximum power output of bilateral and unilateral leg multi-joint movements in elderly women did not depend on the intrinsic shortening velocity of muscle action, but largely on reduction in force generating capacity. This suggests the importance of preventing a loss of force generating capacity of muscles during leg multi-joint movements in elderly women.  相似文献   

10.
It is widely known that the pinch-grip forces of the human hand are linearly related to the weight of the grasped object. Less is known about the relationship between grip force and grip stiffness. We set out to determine variations to these dependencies in different tasks with and without visual feedback. In two different settings, subjects were asked to (a) grasp and hold a stiffness-measuring manipulandum with a predefined grip force, differing from experiment to experiment, or (b) grasp and hold this manipulandum of which we varied the weight between trials in a more natural task. Both situations led to grip forces in comparable ranges. As the measured grip stiffness is the result of muscle and tendon properties, and since muscle/tendon stiffness increases more-or-less linearly as a function of muscle force, we found, as might be predicted, a linear relationship between grip force and grip stiffness. However, the measured stiffness ranges and the increase of stiffness with grip force varied significantly between the two tasks. Furthermore, we found a strong correlation between regression slope and mean stiffness for the force task which we ascribe to a force stiffness curve going through the origin. Based on a biomechanical model, we attributed the difference between both tasks to changes in wrist configuration, rather than to changes in cocontraction. In a new set of experiments where we prevent the wrist from moving by fixing it and resting it on a pedestal, we found subjects exhibiting similar stiffness/force characteristics in both tasks.  相似文献   

11.
Objectives:The purpose of the present study was to compare the fatigue-induced changes in performance fatigability, bilateral deficit, and patterns of responses for the electromyographic (EMG) and mechanomyographic (MMG) amplitude (AMP) and mean power frequency (MPF), during unilateral and bilateral maximal, fatiguing leg extensions.Methods:Nine men (Mean±SD; age =21.9±2.4 yrs; height =181.8±11.9 cm; body mass =85.8±6.2 kg) volunteered to perform 50 consecutive maximal, bilateral (BL), unilateral dominant (DL), and unilateral non-dominant (NL) isokinetic leg extensions at 180°·s-1, on 3 separate days. Electromyographic and MMG signals from both vastus lateralis (VL) muscles were recorded. Repeated measures ANOVAs were utilized to examine mean differences in normalized force, EMG AMP, EMG MPF, MMG AMP, MMG MPF and the bilateral deficit.Results:The results demonstrated a Condition × Repetition interaction for normalized force (p=0.004, η2p=0.222) and EMG MPF (p=0.034, η2p=0.214) and main effects for Repetition for EMG AMP (p=0.019, η2p=0.231), MMG AMP (p<0.001, η2p=0.8550), MMG MPF (p=0.009, η2p=0.252), and the bilateral deficit (p<0.001, η2p=0.366).Conclusions:The findings demonstrated less performance fatigability during the BL than the unilateral tasks, likely due to a reduced relative intensity via interhemispheric inhibition that attenuated the development of excitation-contraction coupling failure during the BL task.  相似文献   

12.
Precision of trunk movement has commonly been examined by testing relocation accuracy rather than evaluating accuracy of tracking dynamic movement. In this study we used a 3-D motion capture system to provide a novel real-time tracking task to assess trunk motor control at varying movement speeds between people with and without chronic non-specific low back pain (LBP). Eleven asymptomatic volunteers and 15 participants with chronic non-specific LBP performed 12 continuous cycles of trunk flexion–extension following real time visual feedback, during which, trunk motion was measured using eight optoelectronic infrared cameras. Significant time differences between the feedback and actual trunk motion were found between groups (P = 0.001). Both groups had similar variability of tracking accuracy when following the feedback (P > 0.05). However, tracking variability at a slow speed correlated (P = 0.03; r = 0.55) with the Fear-Avoidance Beliefs Questionnaire (FABQ) scores in those with LBP. This study shows that both asymptomatic people and individuals with LBP displayed anticipatory behaviour, however, the response of those with LBP was consistently delayed in tracking the visual feedback compared to the asymptomatic group. Additionally, the extent of variability of tracking accuracy over repeated tracking cycles was associated with the degree of fear of movement in people with LBP.  相似文献   

13.
This study examined the reliability and scaling of the flexor carpi radialis (FCR) V-wave during submaximal and maximal voluntary muscle contractions (MVC). 23 participants were tested on three separate sessions. For each session, participants performed isometric wrist flexions at five contraction levels (20, 40, 60, 80 and 100 %MVC). When the target contraction level was reached, a supramaximal electrical stimulus was applied to the median nerve in order to elicit an FCR V-wave. Across all participants, the FCR V-wave amplitude, normalized to its superimposed M-wave amplitude, increased from 0.030 ± 0.001 to 0.143 ± 0.015 (P < 0.001) as the muscle contraction increased from 20 to 100 %MVC. Contraction level did not influence the reliability of evoking the FCR V-wave, as the V-wave demonstrated both stability and consistency. With the exception of a single day main effect during the 20 %MVC condition, V:Msup was not different across days or trials (P > 0.05) indicating measurement stability. High reliability co-efficients (0.827–0.913) at each contraction level signified measurement consistency. This study establishes that FCR V-waves can be reliably evoked during both submaximal and maximal muscle contractions and suggests the possibility for FCR V-wave recordings to be used to document neuromuscular adaptations associated with factors such as training or fatigue.  相似文献   

14.

Background

Patellar tendinopathy (PT) is one of the most common knee disorders among athletes. Changes in morphology and elasticity of the painful tendon and how these relate to the self-perceived pain and dysfunction remain unclear.

Objectives

To compare the morphology and elastic properties of patellar tendons between athlete with and without unilateral PT and to examine its association with self-perceived pain and dysfunction.

Methods

In this cross-sectional study, 33 male athletes (20 healthy and 13 with unilateral PT) were enrolled. The morphology and elastic properties of the patellar tendon were assessed by the grey and elastography mode of supersonic shear imaging (SSI) technique while the intensity of pressure pain, self-perceived pain and dysfunction were quantified with a 10-lb force to the most painful site and the Victorian Institute of Sport Assessment-patella (VISA-P) questionnaire, respectively.

Results

In athletes with unilateral PT, the painful tendons had higher shear elastic modulus (SEM) and larger tendon than the non-painful side (p<0.05) or the dominant side of the healthy athletes (p<0.05). Significant correlations were found between tendon SEM ratio (SEM of painful over non-painful tendon) and the intensity of pressure pain (rho  = 0.62; p = 0.024), VISA-P scores (rho  = −0.61; p = 0.026), and the sub-scores of the VISA-P scores on going down stairs, lunge, single leg hopping and squatting (rho ranged from −0.63 to −0.67; p<0.05).

Conclusions

Athletes with unilateral PT had stiffer and larger tendon on the painful side than the non-painful side and the dominant side of healthy athletes. No significant differences on the patellar tendon morphology and elastic properties were detected between the dominant and non-dominant knees of the healthy control. The ratio of the SEM of painful to non-painful sides was associated with pain and dysfunction among athletes with unilateral PT.  相似文献   

15.
This study was to investigate the motor functional recovery process in chronic stroke during robot-assisted wrist training. Fifteen subjects with chronic upper extremity paresis after stroke attended a 20-session wrist tracking training using an interactive rehabilitation robot. Electromyographic (EMG) parameters, i.e., EMG activation levels of four muscles: biceps brachii (BIC), triceps brachii (TRI, lateral head), flexor carpiradialis (FCR), and extensor carpiradialis (ECR) and their co-contraction indexes (CI) were used to monitor the neuromuscular changes during the training course. The EMG activation levels of the FCR (11.1% of decrease from the initial), BIC (17.1% of decrease from the initial), and ECR (29.4% of decrease from the initial) muscles decreased significantly during the training (P < 0.05). Such decrease was associated with decreased Modified Ashworth Scores for both the wrist and elbow joints (P < 0.05). Significant decrease (P < 0.05) was also found in CIs of muscle pairs, BIC&TRI (21% of decrease from the initial), FCR&BIC (11.3% of decrease from the initial), ECR&BIC (49.3% of decrease from the initial). The decreased CIs related to the BIC muscle were mainly caused by the reduction in the BIC EMG activation level, suggesting a better isolation of the wrist movements from the elbow motions. The decreased CI of ECR& FCR in the later training sessions (P < 0.05) was due to the reduced co-contraction phase of the antagonist muscle pair in the tracking tasks. Significant improvements (P < 0.05) were also found in motor outcomes related to the shoulder/elbow and wrist/hand scores assessed by the Fugl–Meyer assessment before and after the training. According to the evolution of the EMG parameters along the training course, further motor improvements could be obtained by providing more training sessions, since the decreases of the EMG parameters did not reach a steady state before the end of the training. The results in this study provided an objective and quantitative EMG measure to describe the motor recovery process during poststroke robot-assisted wrist for the further understanding on the neuromuscular mechanism associated with the recovery.  相似文献   

16.
The presumed link between bilateral asymmetry and lateralized habitual activity in extinct hominins is the basis upon which inferences of ‘hand preference’ often derive. While this presumption is reasonable, in-vivo comparisons of skeletal asymmetries and self-reported handedness are rare, and as a result the accuracy of these inferences is questionable. To assess this relationship in living humans, reported ‘handedness’ was compared against peripheral quantitative computed tomography (pQCT) derived bilateral measurements of humeral, ulnar, and tibial midshaft cortical area (CA) and torsional rigidity (J). Significant bilateral differences were found in the humerus for all groups, and in the ulna for the cricketer and field hockey sub-samples. Additionally, cricketers’ non-dominant tibiae were more robust than their dominant tibiae. An assessment of ‘Dominance Asymmetry’ revealed that measures of CA and J were higher in the dominant humeri in ∼90% of participants; in the ulna this was true in ∼75% of cases, and in the tibia CA and J were higher in the dominant limb less than 50% of the time. Comparisons of (self)‘Reported’ hand preference against ‘Predicted’ hand preference (based on the calculation of % Directional Asymmetry) revealed a low level of error for predictions based on both humeral (∼4-5% error) and ulnar (6-11% error) asymmetry. Error was decreased with the exclusion of individuals displaying less than 2.5-5% asymmetry. Contrarily, predictions based on tibial analyses had a much higher level of ‘error’ (∼45%). Overall, the results support currently accepted approaches for inferring ‘hand preference’ from measures of upper limb geometric asymmetry in the hominin skeleton.  相似文献   

17.
18.
The quiet stance is a complicated motor act requiring sophisticated sensorimotor integration to balance an artificial inverted pendulum with the ankle musculature. The objective of this study was to characterize the effects of stance pattern (bilateral stance vs. unilateral stance) and directional influence of light finger touch (medial–lateral vs. anterior–posterior) in unilateral stance upon responsiveness of the soleus H reflex. Sixteen healthy volunteers (mean age, 24.25 ± 1.77 years) participated in four postural tasks with the eyes open, including the bilateral stance (BS), the unilateral stance without finger touch (USNT), and with finger touch in the medial–lateral direction (USML) and anterior–posterior direction (USAP). Meanwhile, the soleus H reflex, the pre-stimulus background activity of ankle antagonist pairs, and center of pressure (CoP) sway were measured. In reference to the BS, the USNT resulted in a significant stance effect on suppression of the soleus H reflex (H/Mmax) associated with enhancement of CoP sway. Among the conditions of unilateral stance, there was a marked directional effect of finger touch on modulation of the H/Mmax. A greater disinhibition of the H/Mmax in consequence to light touch in the ML direction than in the AP direction was noted (H/Mmax: USML > USAP > USNT). This directional modulation of the soleus H reflex concurred with haptic stabilization of posture in unilateral stance, showing a more pronounced reduction in CoP sway in the USML condition than in the USAP condition. However, alteration in postural sway and modulation of the soleus H reflex were not mutually correlated when stance pattern or touch vector varied. In conclusion, gating of the soleus H reflex indicated adaptation of an ankle strategy to stance pattern and haptic stabilization of posture. Relative to bilateral stance, postural maintenance in unilateral stance relied less on reflexive correction of the soleus. When finger touch was provided in line with prevailing postural threat in the lateral direction, postural stability in unilateral stance was better secured than finger touch in anterior–posterior direction, resulting in more pronounced disinhibition of the monosynaptic reflex pathway.  相似文献   

19.
Background: Plyometric shoulder exercises are commonly used to progress from slow analytical strength training to more demanding high speed power training in the return to play phase after shoulder injury. The aim of this study was first, to investigate scapular muscle activity in plyometric exercises to support exercise selection in practice and second, to enhance understanding of how scapular muscles are recruited during the back and forth movement phase of these exercises. Methods: Thirty-two healthy subjects performed 10 plyometric exercises while surface EMG-activity of the scapular muscles (upper (UT), middle (MT) and lower trapezius (LT) and serratus anterior (SA)) was registered. A high speed camera tracked start and end of the back and forth movement. Results: Mean scapular EMG activity during the 10 exercises ranged from 14.50% to 76.26%MVC for UT, from 15.19% to 96.55%MVC for MT, from 13.18% to 94.35%MVC for LT and from 13.50% to 98.50%MVC for SA. Anova for repeated measures showed significant differences in scapular muscle activity between exercises (p < 0.001) and between the back and forth movement (p < 0.001) within exercises. Conclusion: Plyometric shoulder exercises require moderate (31–60%MVC) to high (>60%MVC) scapular muscle activity. Highest MT/LT activity was present in prone plyometric external rotation and flexion. Highest SA activity was found in plyometric external rotation and flexion with Xco and plyometric push up on Bosu. Specific exercises can be selected that recruit minimal levels of UT activity (<15%): side lying plyometric external rotation and horizontal abduction or plyometric push up on the Bosu. The results of this study support exercise selection for clinical practice.  相似文献   

20.
The purpose of this study was to compare the forces and moments of the whole upper limb, analyzing forces and moments at the shoulder, elbow and wrist joints simultaneously during manual wheelchair propulsion of persons with different levels of spinal cord injury (SCI) on a treadmill. Fifty-one people participated in this study and were grouped by their level of SCI: C6 tetraplegia (G1), C7 tetraplegia (G2), high paraplegia (G3), and low paraplegia (G4). An inverse dynamic model was defined to compute net joint forces and moments from segment kinematics, the forces acting on the pushrim, and subject anthropometrics. Right side, upper limb kinematic data were collected with four camcorders (Kinescan–IBV). Kinetic data were recorded by replacing the wheels with SmartWheels (Three Rivers Holdings, LLC). All participants propelled the wheelchair at 3 km/h for 1 min. The most noteworthy findings in both our tetraplegic groups in relation to paraplegic groups were increased superior joint forces in the shoulder (G1 and G2 vs G3 p<0.001; G1 and G2 vs G4 p<0.01), elbow (G1 vs G3 p<0.001; G1 vs G4 p<0.05) and wrist (G1 vs G4 p<0.001), an increased adduction moment in the shoulder (G1 vs G3 p<0.001; G1 vs G4 p<0.01; G2 vs G3 and G4 p<0.05) and the constancy of the moments of force of the wrist the fact that they reached their lowest values in the tetraplegic groups. This pattern may increase the risk of developing upper limb overuse injuries in tetraplegic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号