首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Iron is a key micronutrient for microbial growth but is often present in low concentrations or in biologically unavailable forms. Many microorganisms overcome this challenge by producing siderophores, which are ferric-iron chelating compounds that enable the solubilization and acquisition of iron in a bioactive form. Pantoea stewartii subsp. stewartii, the causal agent of Stewart''s wilt of sweet corn, produces a siderophore under iron-limiting conditions. The proteins involved in the biosynthesis and export of this siderophore are encoded by the iucABCD-iutA operon, which is homologous to the aerobactin biosynthetic gene cluster found in a number of enteric pathogens. Mutations in iucA and iutA resulted in a decrease in surface-based motility that P. stewartii utilizes during the early stages of biofilm formation, indicating that active iron acquisition impacts surface motility for P. stewartii. Furthermore, bacterial movement in planta is also dependent on a functional siderophore biosynthesis and uptake pathway. Most notably, siderophore-mediated iron acquisition is required for full virulence in the sweet corn host, indicating that active iron acquisition is essential for pathogenic fitness for this important xylem-dwelling bacterial pathogen.  相似文献   

5.
Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway of P. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogen in planta.  相似文献   

6.
玉米细菌性枯萎病及其病原菌的检测技术   总被引:3,自引:0,他引:3  
玉米细菌性枯萎病是影响玉米生产的重要病害 ,该病害通过带菌的种子进行远距离传播 ,对该病菌的检测成为防止和控制该病害的重要手段。介绍现有的检测该病菌的各种方法 ,即黑色素选择培养法、double sandwichELISA以及RAPD PCR ,LCR PCR ,Nested PCR ,multiplePCR和荧光实时PCR等分子生物学检测方法 ,并对这些方法的特性进行比较和探讨。  相似文献   

7.
Capsular polysaccharide synthesis and virulence in the plant pathogenic bacterium Pantoea stewartii ssp. stewartii requires the quorum-sensing regulatory proteins, EsaR and EsaI, and the diffusible inducer N-(3-oxo-hexanoyl)-L-homoserine lactone. Prior mutational studies suggested that EsaR might function as a repressor of quorum sensing in the control of capsular polysaccharide synthesis. Further, a lux box-like palindromic sequence coinciding with the putative -10 element of the esaR promoter suggested a possible negative autoregulatory role for EsaR. This report presents genetic evidence that EsaR represses the esaR gene under inducer-limiting conditions, and that addition of inducer promotes rapid, dose-dependent derepression. DNA mobility-shift assays and analyses by surface plasmon resonance refractometry show that EsaR binds target DNAs in a ligand-free state, and that inducer alters the binding characteristics of EsaR. Physical measurements indicate that the EsaR protein binds N-(3-oxo-hexanoyl)-L-homoserine lactone, in a 1:1 protein:ligand ratio, and that inducer binding enhances the thermal stability of the EsaR protein. These combined genetic and biochemical data establish that EsaR regulates its own expression by signal-independent repression and signal-dependent derepression. Additionally, we provide evidence that EsaR does not govern the expression of the linked esaI gene, thus EsaR has no role in controlling coinducer synthesis.  相似文献   

8.
The hrp/wts gene cluster of Pantoea stewartii subsp. stewartii is required for pathogenicity on sweet corn and the ability to elicit a hypersensitive response (HR) in tobacco. Site-directed transposon mutagenesis and nucleotide sequencing were used to identify hrp/wts genes within the left 20 kb of this cluster. Seventeen open reading frames (ORFs) comprise seven genetic complementation groups. These ORFs share homology with hrp and dsp genes from Erwinia amylovora, Erwinia chrysanthemi, and Pseudomonas syringae pathovars and have been designated, in map order, wtsF, wtsE, hrpN, hrpV, hrpT, hrcC, hrpG, hrpF, hrpE, hrpD, hrcJ, hrpB, hrpA, hrpS, hrpY, hrpX, and hrpL. Putative hrp consensus promoter sequences were identified upstream of hrpA, hrpF, hrpN, and wtsE. Expression of the hrpA, hrpC, and wtsE operons was regulated by HrpS. Transposon mutations in all of the hrp operons abolished pathogenicity and HR elicitation, except for the hrpN and hrpV mutants, which were still pathogenic. hrpS, hrpXY, and hrpL regulatory mutations abolished HrpN synthesis, whereas secretory mutations in the hrpC, hrpA, and hrpJ operons permitted intracellular HrpN synthesis. wtsEF mutants were not pathogenic but still produced HrpN and elicited the HR. wtsE encodes a 201-kDa protein that is similar to DspE in E. amylovora and AvrE in P. syringae pv. tomato, suggesting that this protein is a major virulence factor involved in the elicitation of water-soaked lesions.  相似文献   

9.
The pathogenicity of Pantoea stewartii subsp. stewartii to sweet corn and maize requires a Hrp type III secretion system. In this study, we genetically and functionally characterized a disease-specific (Dsp) effector locus, composed of wtsE and wtsF, that is adjacent to the hrp gene cluster. WtsE, a member of the AvrE family of effector proteins, was essential for pathogenesis on corn and was complemented by DspA/E from Erwinia amylovora. An intact C-terminus of WtsE, which contained a putative endoplasmic reticulum membrane retention signal, was important for function of WtsE. Delivery of WtsE into sweet corn leaves by an Escherichia coli strain carrying the hrp cluster of Erwinia chrysanthemi caused water-soaking and necrosis. WtsE-induced cell death was not inhibited by cycloheximide treatment, unlike the hypersensitive response caused by a known Avr protein, AvrRxol. WtsF, the putative chaperone of WtsE, was not required for secretion of WtsE from P. stewartii, and the virulence of wtsF mutants was reduced only at low inoculum concentrations. However, WtsF was required for full accumulation of WtsE within the bacteria at low temperatures. In contrast, WtsF was needed for efficient delivery of WtsE from E. coli via the Erwinia chrysanthemi Hrp system.  相似文献   

10.
11.
Histone modifications are crucial for the regulation of secondary metabolism in various filamentous fungi. Here we studied the involvement of histone deacetylases (HDACs) in secondary metabolism in the phytopathogenic fungus Fusarium fujikuroi, a known producer of several secondary metabolites, including phytohormones, pigments, and mycotoxins. Deletion of three Zn2+-dependent HDAC-encoding genes, ffhda1, ffhda2, and ffhda4, indicated that FfHda1 and FfHda2 regulate secondary metabolism, whereas FfHda4 is involved in developmental processes but is dispensable for secondary-metabolite production in F. fujikuroi. Single deletions of ffhda1 and ffhda2 resulted not only in an increase or decrease but also in derepression of metabolite biosynthesis under normally repressing conditions. Moreover, double deletion of both the ffhda1 and ffhda2 genes showed additive but also distinct phenotypes with regard to secondary-metabolite biosynthesis, and both genes are required for gibberellic acid (GA)-induced bakanae disease on the preferred host plant rice, as Δffhda1 Δffhda2 mutants resemble the uninfected control plant. Microarray analysis with a Δffhda1 mutant that has lost the major HDAC revealed differential expression of secondary-metabolite gene clusters, which was subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are involved not only in gene silencing but also in the activation of some genes. Chromatin immunoprecipitation with the Δffhda1 mutant revealed significant alterations in the acetylation state of secondary-metabolite gene clusters compared to the wild type, thereby providing insights into the regulatory mechanism at the chromatin level. Altogether, manipulation of HDAC-encoding genes constitutes a powerful tool to control secondary metabolism in filamentous fungi.  相似文献   

12.
13.
14.
Pantoea ananatis SK-1 produced EPS by AHL-mediated quorum sensing on an LB agar plate containing glucose, fructose, and sucrose. rcsA and rcsB mutants did not produce EPS with or without AHLs and with or without sugars, but they induced necrotic symptoms in onion leaves. These results indicate that EPS production does not relate to the pathogenicity of SK-1.  相似文献   

15.
16.
17.
18.
Pantoea stewartii subsp. stewartii is the causative agent of Stewart''s wilt, a bacterial disease transmitted by the corn flea beetle mainly to sweet corn (Zea mays). In many countries, it is classified as a quarantine organism and must be differentiated from other yellow enteric bacteria frequently occurring with corn. We have created novel primers from the pstS-glmS region of P. stewartii for use in conventional PCR (cPCR) and quantitative PCR (qPCR). To facilitate rapid diagnosis, we applied matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Using whole-cell protein extracts, profiles were generated with a Bruker microflex machine, and the bacteria classified. P. stewartii strains were clearly distinguished from strains of Pantoea agglomerans, Pantoea dispersa, and Pantoea ananatis. Dendrogram analysis of the protein profiles confirmed the score values and showed the formation of separate clades for each species. The identification achieved by MALDI-TOF MS analysis agrees with the diagnosis by specific PCR primers. The combination of both methods allows a rapid and simple identification of the corn pathogen. P. stewartii subsp. stewartii and P. stewartii subsp. indologenes are highly related and can be distinguished not only by virulence assays and indole tests but also by a characteristic pattern in the nucleotide sequence of recA.Stewart''s wilt, caused by Pantoea stewartii subsp. stewartii (synonym Erwinia stewartii) is a serious disease of sweet corn (Zea mays) that was originally described in the United States (17, 18). Its transmission depends on the corn flea beetle (Chaetocnema pulicaria), which ingests the pathogen from infected tissue and transfers the bacteria to healthy plants. The beetle is also the main niche for overwintering of P. stewartii. Direct distribution by seed transmission is also possible (3, 11) but is not considered a major source. Stewart''s wilt is also a problem on certain elite inbred maize lines used for producing hybrid field corn seed in the mideastern United States (2). According to data from the European and Mediterranean Plant Protection Organization (EPPO) about its occurrence in Europe, Stewart''s wilt was reported from but not established in Austria, Greece, Poland, Romania, and Russia. More than 60 countries place import regulations on maize seed imports from affected areas, and surveillance of traded plant material is required to prevent further distribution of the pathogen (14).Several detection methods have been described for P. stewartii, including monoclonal antibodies for enzyme-linked immunosorbent assay (ELISA) (8). For the detection of P. stewartii by PCR analysis, primer pairs derived from rRNA genes and chromosomal markers, such as regions coding for the Hrp type III secretion system (hrp) and capsular exopolysaccharide (EPS) synthesis (cps), have been published (4). These primers were derived from chromosomal regions which are also common to other bacteria. A unique DNA area of P. stewartii might therefore be better suited for the design of specific primers. Another approach, the ligase chain reaction, requires radioactively labeled primers (21). Primers complementary to cpsD (wceL) were applied for quantitative PCR (qPCR) (19). A fingerprinting analysis based on miniprimer PCR and utilizing 10-mer short oligonucleotides combined with modified Taq polymerase has been reported (22). The signal intensity of PCRs is often affected by inhibitory plant components in the extracts. Thus, low levels of P. stewartii may not be detected. A collective drawback of PCR-based identification approaches is the detection of DNA from nonviable cells and traces of residual nucleic acids. This could lead to the rejection of safe seed lots. A method involving culturing of bacteria extracted from plants, lysis, and subsequent PCR analysis and named bio-PCR was established to ensure the detection of only viable bacterial populations (16). Screening of individual colonies from a plate with mixed cultures by PCR to verify reisolation of the pathogen is tedious and needs another fast and reliable method. Strains of Pantoea stewartii subsp. indologenes cause leaf spot on foxtail millet (Setaria italica) and pearl millet (Pennisetum americanum) or rot of Ananas comosus, and one strain was isolated from a diseased cluster bean (Cyamopsis tetragonolobus) (10). It is important to distinguish between P. stewartii subsp. stewartii and P. stewartii subsp. indologenes, since only the stewartii subspecies causes Stewart''s wilt.Furthermore, some bacterial isolates might not be unambiguously identified with PCR and with phytopathological methods. The recent successful identification of Erwinia isolates with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) analysis profiling of protein patterns from whole cells (15) induced us to apply this method for the detection of P. stewartii and its differentiation from Pantoea agglomerans and other Pantoea species.  相似文献   

19.
Aims: The development and evaluation of a sensitive and specific TaqMan® real-time polymerase chain reaction (PCR) for the detection and identification of Pantoea stewartii on maize. Methods and Results: A TaqMan®-based real-time PCR assay targeting the cpsD gene enabling specific detection of P. stewartii in maize leaves and seeds was developed. Under optimal conditions, the selected primers and probe were specific for the detection of all 14 reference P. stewartii strains by real-time PCR. The 32 non-Panteoa and eight other Pantoea strains tested negative. The TaqMan® PCR assay detected 1 pg of purified DNA and 104P. stewartii colony forming units per millilitre (10 cells per reaction) in pure cultures consisting of 92·0% intact (viable) cells. Direct processing of leaf lesions and seeds by the real-time PCR detected 10 and 50 P. stewartii cells per reaction respectively. TaqMan® real-time PCR results were validated by dilution plating of macerates and PCR-based subcloning followed by DNA sequencing. Conclusions: The real-time PCR assay described is a rapid, reliable and more sensitive tool for the detection of P. stewartii. Significance and Impact of the study: This real-time PCR assay would avoid false-negative results and reduce the time required for certifying maize seed shipments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号