首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A segregating population from the cross between drought sensitive (Variant-2) and drought tolerant (Cham-6) genotypes was made to identify molecular markers linked to wheat (Triticum aestivum L.) flag leaf senescence under water-stress. From 38 random amplified polymorphic DNA (RAPD) primers, 25 inter-simple sequence repeat (ISSR) primers and 46 simple sequence repeat (SRR) primers, tested for polymorphism among parental genotypes and F2 population. Quantitative trait locus (QTL) for flag leaf senescence was associated with 1 RAPD marker (Pr9), 4 ISSR markers (Pr8, AD5, AD2 and AD3), and 1 SSR marker (Xgwm382) and explained 44, 50, 35, 31, 22 and 73 % phenotypic variation, respectively. The genetic distance between flag leaf senescence gene and Pr9 was 10.0 cM (LOD score 22.9). The markers Pr8, AD5, AD2 and AD3 had genetic distances of 10.5, 14.6, 15.6 and 18.1 cM, respectively (LOD scores 22.6, 17.8, 17.5 and 14.6). The genetic distance between Xgwm382 was 3.9 cM (LOD score 33.8). Therefore, the RAPD, ISSR and SSR markers linked to the QTL for the drought-induced flag leaf senescence can be further used in breeding for drought tolerance in wheat.  相似文献   

2.
A substantial genetic contribution to baseline peripheral blood counts has been established. We performed quantitative trait locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline white blood cell (WBC) count, platelet (Plt) count, and mean platelet volume (MPV) in F2 intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified six significant WBC QTL: Wbcq1 (peak LOD score at 38 cM, Chr 1), Wbcq2 (42 cM, Chr 3), Wbcq3 (0 cM, Chr 15), Wbcq4 (58 cM, Chr 1), Wbcq5 (82 cM, Chr 1), and Wbcq6 (8 cM, Chr 14). Three significant Plt QTL were identified: Pltq1 (24 cM, Chr 2), Pltq2 (36 cM, Chr 7), and Pltq3 (10 cM, Chr 12). Two significant MPV QTL were identified, Mpvq1 (62 cM, Chr 15) and Mpvq2 (44 cM, Chr 8). In total, the WBC QTL accounted for up to 31% of the total variance in baseline WBC count, while the Plt and MPV QTL accounted for up to 30% and 49% of the total variance, respectively. These analyses underscore the genetic complexity underlying these traits in normal populations and provide the basis for future studies to identify novel genes involved in the regulation of mammalian hematopoiesis.  相似文献   

3.
Quantitative trait loci for baseline erythroid traits   总被引:1,自引:0,他引:1  
A substantial genetic contribution underlies variation in baseline peripheral blood counts. We performed quantitative trait locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline erythroid parameters in F2 intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified multiple significant QTL for red blood cell (RBC) count, hemoglobin (Hgb) and hematocrit (Hct) levels, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean cell hemoglobin concentration (CHCM). We identified four RBC count QTL: Rbcq1 (Chr 1, peak LOD score at 62 cM,), Rbcq2 (Chr 4, 60 cM), Rbcq3 (Chr 11, 34 cM), and Rbcq4 (Chr 10, 60 cM). Three MCV QTL were identified: Mcvq1 (Chr 7, 30 cM), Mvcq2 (Chr 11, 6 cM), and Mcvq3 (Chr 10, 60 cM). Single significant loci for Hgb (Hgbq1, Chr 16, 32 cM), Hct (Hctq1, Chr 3, 42 cM), and MCH (Mchq1, Chr 10, 60 cM) were identified. The data support the existence of a common RBC/MCH/MCV locus on Chr 10. Two QTL for CHCM (Chcmq1, Chr 2, 48 cM; Chcmq2, Chr 9, 44 cM) and an interaction between Chcmq2 with a locus on Chr 19 were identified. These analyses emphasize the genetic complexity underlying the regulation of erythroid peripheral blood traits in normal populations and suggest that genes not previously recognized as significantly impacting normal erythropoiesis exist.  相似文献   

4.
Pea rust caused by Uromyces fabae (Pers.) de-Bary is a major problem in warm humid regions causing huge economic losses. A mapping population of 136 F6:7 recombinant inbred lines (RILs) derived from the cross between pea genotypes, HUVP 1 (susceptible) and FC 1 (resistant) was evaluated in polyhouse as well as under field conditions during two consecutive years. Infection frequency (IF) and area under disease progress curve (AUDPC) were used for evaluation of rust reaction of the RILs. A linkage map was constructed with 57 polymorphic loci selected from 148 simple sequence repeats (SSRs), 3 sequence tagged sites (STS), and 2 random amplified polymorphic (RAPD) markers covering 634 cM of genetic distance on the seven linkage groups of pea with an average interval length of 11.3 cM. Composite interval mapping (CIM) revealed one major (Qruf) and one minor (Qruf1) QTL for rust resistance on LGVII. The LOD (5.2–15.8) peak for Qruf was flanked by SSR markers, AA505 and AA446 (10.8 cM), explaining 22.2–42.4% and 23.5–58.8% of the total phenotypic variation for IF and AUDPC, respectively. The minor QTL was environment-specific, and it was detected only in the polyhouse (LOD values 4.2 and 4.8). It was flanked by SSR markers, AD146 and AA416 (7.3 cM), and explained 11.2–12.4% of the total phenotypic variation. The major QTL Qruf was consistently identified across all the four environments. Therefore, the SSR markers flanking Qruf would be useful for marker-assisted selection for pea rust (U. fabae) resistance.  相似文献   

5.

Background

Walnut (Juglans regia, 2n = 32, approximately 606 Mb per 1C genome) is an economically important tree crop. Resistance to anthracnose, caused by Colletotrichum gloeosporioides, is a major objective of walnut genetic improvement in China. The recently developed specific length amplified fragment sequencing (SLAF-seq) is an efficient strategy that can obtain large numbers of markers with sufficient sequence information to construct high-density genetic maps and permits detection of quantitative trait loci (QTLs) for molecular breeding.

Results

SLAF-seq generated 161.64 M paired-end reads. 153,820 SLAF markers were obtained, of which 49,174 were polymorphic. 13,635 polymorphic markers were sorted into five segregation types and 2,577 markers of them were used to construct genetic linkage maps: 2,395 of these fell into 16 linkage groups (LGs) for the female map, 448 markers for the male map, and 2,577 markers for the integrated map. Taking into account the size of all LGs, the marker coverage was 2,664.36 cM for the female map, 1,305.58 cM for the male map, and 2,457.82 cM for the integrated map. The average intervals between two adjacent mapped markers were 1.11 cM, 2.91 cM and 0.95 cM for three maps, respectively. ‘SNP_only’ markers accounted for 89.25 % of the markers on the integrated map. Mapping markers contained 5,043 single nucleotide polymorphisms (SNPs) loci, which corresponded to two SNP loci per SLAF marker. According to the integrated map, we used interval mapping (Logarithm of odds, LOD > 3.0) to detect our quantitative trait. One QTL was detected for anthracnose resistance. The interval of this QTL ranged from 165.51 cM to 176.33 cM on LG14, and ten markers in this interval that were above the threshold value were considered to be linked markers to the anthracnose resistance trait. The phenotypic variance explained by each marker ranged from 16.2 to 19.9 %, and their LOD scores varied from 3.22 to 4.04.

Conclusions

High-density genetic maps for walnut containing 16 LGs were constructed using the SLAF-seq method with an F1 population. One QTL for walnut anthracnose resistance was identified based on the map. The results will aid molecular marker-assisted breeding and walnut resistance genes identification.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1822-8) contains supplementary material, which is available to authorized users.  相似文献   

6.
We investigated the effect of apolipoprotein E (Apoe) on albuminuria in the males of two independent F2 intercrosses between C57BL/6J and A/J mice, using wild-type inbred strains in the first cross and B6-Apoe(-/-) animals in the second cross. In the first cross, we identified three quantitative trait loci (QTL): chromosome (Chr) 2 [LOD 3.5, peak at 70 cM, confidence interval (C.I.) 28-88 cM]; Chr 9 (LOD 2.0, peak 5 cM, C.I. 5-25 cM); and Chr 19 (LOD 1.9, peak 49 cM, C.I. 23-54 cM). The Chr 2 and Chr 19 QTL were concordant with previously found QTL for renal damage in rat and human. The Chr 9 QTL was concordant with a locus found in rat. The second cross, testing only Apoe(-/-) progeny, did not identify any of these loci, but detected two other loci on Chr 4 (LOD 3.2, peak 54 cM, C.I. 29-73 cM) and Chr 6 (LOD 2.6, peak 33 cM, C.I. 11-61 cM), one of which was concordant with a QTL found in rat. The dependence of QTL detection on the presence of Apoe and the concordance of these QTL with rat and human kidney disease QTL suggest that Apoe plays a role in renal damage.  相似文献   

7.
In this study, a population of 97 F1 seedlings from a cross between the interspecific hybrid (European × Chinese species) pear ‘Bayuehong’ (BYH) and the Chinese pear ‘Dangshansuli’ (DS) was used for establishing linkage maps and for quantitative trait loci (QTL) discovery. Using amplified length polymorphism (AFLP), simple sequence repeat (SSR), and sequence-related amplified polymorphism (SRAP) markers, along with the S locus for self-incompatibility, two parental linkage maps were constructed. The map of BYH consisted of 214 markers (143 AFLPs, 64 SRAPs, 6 SSRs, and S) mapped on all 17 linkage groups of the pear genome with a total length of 1,352.7 cM. The map of DS was comprised of 122 markers (83 AFLPs, 37 SRAPs, 1 SSR, and S) distributed along all 17 linkage groups and covering 1,044.3 cM. Based on phenotypic data from two successive years (2007 and 2008) for six fruit traits, including fruit weight (in grams), fruit diameter (in centimeters), fruit length (in centimeters), soluble solids content, fruit shape index, and maturity date, 19 QTLs were detected. These QTLs were mapped on LG 01, LG 02, LG 05, LG 07, LG 08, LG 10 of the BYH map and LG 02, LG 06, LG 15 of the DS map and accounting for 7.1 to 22.0 % of the observed phenotypic variance. Four QTLs, Pfi-8-1 for fruit shape index, Pfm-8-1 for fruit maturity date, Pfw-7-1 and Pfw-8-1 for fruit weight (in grams), with LOD scores ≥3.5, were deemed as major genes. QTLs Pfi-8-1, Pfm-8-1, and Pfw-8-1 were co-localized on LG 08 of the BYH map, along with Pfl-8-1 for fruit length. It was observed that on LG 07 of the BYH map, QTLs for fruit length, fruit shape index, and fruit weight were clustered. When QTL locations from both years were compared, Pfl-7-1 and Pfl-7-2 for fruit length, Pfi-2-1 and Pfi-2-2 for fruit shape index, and Pfm-8-1 and Pfm-8-2 for fruit maturity date were stably mapped onto the same linkage groups, respectively. Moreover, Pfm-8-1 and Pfm-8-2 were also located within the same region of LG 08 of the BYH map.  相似文献   

8.
Advanced intercross lines (AIL) and interval–specific congenic strains (ISCS) were used to fine map previously coarsely defined quantitative trait loci (QTL) on Chromosomes 1,10, and 19, influencing behaviors in the open Field (OF) and light–dark (LD) paradigms in mice. F12(A × B) AIL mice (N = 1130) were phenotyped, genotyped, and mapped. The ISCS were studied only in the telomeric Chromosome 10 region of interest, containing the exploratory and excitability QTL1 (Exq1). The Chromosome 10 Exq1 and Chromosome 19 Exq4 loci mapped robustly in the AIL. The most significant QTL findings (2.0 LOD score intervals; peak; LOD score) came from the TD15 and LD transitions traits, yielding estimated intervals of 2.2 cM for Exq1 (71.3–73.5 cM; peak 72.3 cM; LOD 11.9) and 9.0 cM for Exq4 (29.0–38.2 cM; peak 34 cM; LOD 4.2). The replicated QTLs on Chromosome 1 failed to map in this AIL population. The ISCS data confirmed Exq1 loci in general. However, the ISCS data were complex and less definitive for localizing the Exq1 loci. These exploratory and fear-like behaviors result from inheriting “many small things,” namely, QTL explaining 2%–7% of the phenotypic variance. These results highlight the challenges of positionally cloning loci of small effect for complex traits. In particular, fine-mapping success may depend on the genetic architecture underlying complex traits.Shumin Zhang, Yigong Lou and Howard Gershenfeld contributed equally to this work. Abbreviations: ROI, Region of Interest; RI, recombinant inbred; AIL, advanced intercross line; ISCS, Interval-specific congenic strains; Sqrt, square root; QTL, quantitative trait loci; OF, open field; LOD, likelihood of the odds ratio score; Tde1, traveled distance epoch 1; TDe3, traveled distance epoch 3; TD15, traveled distance during 15 min; VM15, vertical movements during 15 min ; LD, light–dark transitions; AvgCtrT, average center time; Chr, chromosome; Exq, exploratory and excitability QTL.  相似文献   

9.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

10.
Fusarium wilt (FW), caused by the soil-borne fungal pathogen Fusarium oxysporum is a serious disease in cruciferous plants, including the radish (Raphanus sativus). To identify quantitative trait loci (QTL) or gene(s) conferring resistance to FW, we constructed a genetic map of R. sativus using an F2 mapping population derived by crossing the inbred lines ‘835’ (susceptible) and ‘B2’ (resistant). A total of 220 markers distributed in 9 linkage groups (LGs) were mapped in the Raphanus genome, covering a distance of 1,041.5 cM with an average distance between adjacent markers of 4.7 cM. Comparative analysis of the R. sativus genome with that of Arabidopsis thaliana and Brassica rapa revealed 21 and 22 conserved syntenic regions, respectively. QTL mapping detected a total of 8 loci conferring FW resistance that were distributed on 4 LGs, namely, 2, 3, 6, and 7 of the Raphanus genome. Of the detected QTL, 3 QTLs (2 on LG 3 and 1 on LG 7) were constitutively detected throughout the 2-year experiment. QTL analysis of LG 3, flanked by ACMP0609 and cnu_mBRPGM0085, showed a comparatively higher logarithm of the odds (LOD) value and percentage of phenotypic variation. Synteny analysis using the linked markers to this QTL showed homology to A. thaliana chromosome 3, which contains disease-resistance gene clusters, suggesting conservation of resistance genes between them.  相似文献   

11.
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with “broad and thin blade” characteristics and another with “long and narrow blade” characteristics, were applied in the hybridization to yield the F2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for “FL,” explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait “FW,” accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.  相似文献   

12.
Leaf area is an important parameter in oil palm breeding as it is positively correlated with oil yield. However, measurement of leaf area is tedious and also destructive. In the present study, a breeding population with 145 palms derived from a cross between Deli Dura and Avros Pisifera was used to construct a high-density linkage map and identify quantitative trait loci (QTL) for leaf area in oil palm. Using genotyping by sequencing, a linkage map containing 2413 SNPs was constructed. The total length of the linkage map was 1161.89 cM, with an average marker spacing of 0.48 cM. Based on the continuous phenotyping of leaf area from 2010 to 2015, two suggestive QTL for leaf area were mapped on chromosomes (Chr) 3 and 9. The allelic effects of the QTL associated with leaf area in the mapping population were estimated by linear regression using ordinary least squares method. The QTL on Chr 9 explained 13.3% of phenotypic variation for leaf area. A candidate gene, ARC5, within the narrow interval of QTL on Chr 9 was identified. The gene was significantly higher expressed in leaf than root and fruit of oil palm. This high-quality and SNP-based map supplies a base to fine map QTL for agronomic traits in oil palm, and the markers closely linked to the stable QTL may be used in marker-assisted selection in oil palm breeding.  相似文献   

13.
A population of 178 recombinant inbred lines (RILs) was developed using a single seed descendant from a cross between G. hirsutum. acc DH962 and G. hirsutum. cv Jimian5, was used to construct a genetic map and to map QTL for fiber and yield traits. A total of 644 polymorphic loci were used to construct a final genetic map, containing 616 loci and spanning 2016.44 cM, with an average of 3.27 cM between adjacent markers. Statistical analysis revealed that segregation distortion in the intraspecific population was more serious than that in the interspecific population. The RIL population and the two parents were phenotyped under 8 environments (two locations, six years), revealing a total of 134 QTL, including 64 for fiber qualities and 70 for yield components, independently detected in seven environments, explaining 4.40–15.28% of phenotypic variation (PV). Among the 134 QTL, 9 common QTL were detected in more than one environment, and 22 QTL and 19 new QTL were detected in combined analysis (E9). A total of 26 QTL hotspot regions were observed on 13 chromosomes and 2 larger linkage groups, and some QTL clusters related to fiber qualities or yield components were also observed. The results obtained in the present study suggested that to map accurate QTL in crops with larger plant types, such as cotton, phenotyping under multiple environments is necessary to effectively apply the obtained results in molecular marker-assisted selection breeding and QTL cloning.  相似文献   

14.
A genetic linkage map was constructed for watermelon using a testcross population [Plant Accession Griffin 14113 (Citrullus lanatus var. citroides) 2 New Hampshire Midget (NHM; C. lanatus var. lanatus)] 2 U.S. Plant Introduction (PI) 386015 (Citrullus colocynthis). The map contains 141 randomly amplified polymorphic DNA (RAPD) markers produced by 78 primers, 27 inter-simple sequence repeat (ISSR) markers produced by 17 primers, and a sequence-characterized amplified region (SCAR) marker that was previously reported as linked (1.6 cM) to race-1 Fusarium wilt [incited by Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F.Sm.) W.C. Synder &; H.N. Hans] resistance in watermelon. The map consists of 25 linkage groups. Among them are a large linkage group that contains 22 markers covering a mapping distance of 225.6 cM and six large groups each with 10-20 markers covering a mapping distance of 68.8 to 110.8 cM. There are five additional linkage groups consisting of 3-7 markers per group, each covering a mapping distance of 36.5 to 57.2 cM. The 13 remaining linkage groups are small, each consisting of 2-11 markers covering a mapping distance of 3.5-29.9 cM. The entire map covers a total distance of 1,166.2 cM with an average distance of 8.1 cM between two markers. This map is useful for the further development of markers linked to disease resistance and watermelon fruit qualities.  相似文献   

15.
Sex ratio and shell-thickness type are among the main components determining yield in oil palm. An integrated linkage map of oil palm was constructed based on 208 offspring derived from a cross between two tenera palms differing in inherited sex ratio. The map consisted of 210 genomic simple sequence repeats (SSRs), 28 expressed sequence tag SSRs, 185 amplified fragment length polymorphism markers, and the Sh locus, which controls shell-thickness phenotype, distributed across 16 linkage groups covering 1,931 cM, with an average marker distance of 4.6 cM. Quantitative trait locus (QTL) analysis identified eight QTLs across six linkage groups associated with sex ratio and related traits. These QTLs explained 8.1–13.1 % of the total phenotypic variance. The QTL for sex ratio on linkage group 8 overlapped with a QTL for number of male inflorescences. In most cases a specific QTL allele combination was responsible for genotype class mean differences, suggesting that most QTLs in heterozygous oil palm are likely to be segregating for multiple alleles with different degrees of dominance. In addition, two new SSRs were shown to flank the major Sh locus controlling the fruit variety type in oil palm.  相似文献   

16.
Powdery mildew caused by Podosphaera xanthii has become a major problem in melon since it occurs all year round irrespective of the growing system. The TGR-1551 melon genotype was found to be resistant to several melon diseases, among them powdery mildew. However, the corresponding resistance genes have been never mapped. We constructed an integrated genetic linkage map using an F2 population derived from a cross between the multi-resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’. The map spans 1,284.9 cM, with an average distance of 3.6 cM among markers, and consists of 354 loci (188 AFLP, 39 RAPD, 111 SSR, 14 SCAR/CAPS/dCAPS, and two phenotypic traits) distributed in 14 linkage groups. QTL analysis identified one major QTL (Pm-R) on LG V for resistance to races 1, 2, and 5 of powdery mildew. The PM4-CAPS marker is closely linked to the Pm-R QTL at a genetic distance of 1.9 cM, and the PM3-CAPS marker is located within the support interval of this QTL. These codominant markers, together with the map information reported here, could be used for melon breeding, and particularly for genotyping selection of resistance to powdery mildew in this vegetable crop species.  相似文献   

17.
Lentil (Lens culinaris Medik.) is an excellent source of protein and carbohydrates and is also rich in essential trace elements for the human diet. Selenium (Se) is an essential micronutrient for human health and nutrition, providing protection against several diseases and regulating important biological systems. Dietary intake of 55 μg of Se per day is recommended for adults, with inadequate Se intake causing significant health problems. The objective of this study was to identify and map quantitative trait loci (QTL) of genes controlling Se accumulation in lentil seeds using a population of 96 recombinant inbred lines (RILs) developed from the cross “PI 320937” × “Eston” grown in three different environments for two years (2012 and 2013). Se concentration in seed varied between 119 and 883 μg/kg. A linkage map consisting of 1,784 markers (4 SSRs, and 1,780 SNPs) was developed. The map spanned a total length of 4,060.6 cM, consisting of 7 linkage groups (LGs) with an average distance of 2.3 cM between adjacent markers. Four QTL regions and 36 putative QTL markers, with LOD scores ranging from 3.00 to 4.97, distributed across two linkage groups (LG2 and LG5) were associated with seed Se concentration, explaining 6.3–16.9% of the phenotypic variation.  相似文献   

18.
Bay scallop (Argopecten irradians) is one of the most economically important aquaculture species in China. In this study, we constructed a consensus microsatellite-based genetic linkage map with a mapping panel containing two hybrid backcross-like families involving two subspecies of bay scallop, A. i. irradians and A. i. concentricus. One hundred sixty-one microsatellite and one phenotypic (shell color) markers were mapped to 16 linkage groups (LGs), which corresponds to the haploid chromosome number of bay scallop. The sex-specific map was 779.2 cM and 781.6 cM long in female and male, respectively, whereas the sex-averaged map spanned 849.3 cM. The average resolution of integrated map was 5.9 cM/locus and the estimated coverage was 81.3%. The proportion of distorted markers occurred more in the hybrid parents, suggesting that the segregation distortion was possibly resulted from heterospecific interaction between genomes of two subspecies of bay scallop. The overall female-to-male recombination rate was 1.13∶1 across all linked markers in common to both parents, and considerable differences in recombination also existed among different parents in both families. Four size-related traits, including shell length (SL), shell height (SH), shell width (SW) and total weight (TW) were measured for quantitative trait loci (QTL) analysis. Three significant and six suggestive QTL were detected on five LGs. Among the three significant QTL, two (qSW-10 and qTW-10, controlling SW and TW, respectively) were mapped on the same region near marker AiAD121 on LG10 and explained 20.5% and 27.7% of the phenotypic variance, while the third (qSH-7, controlling SH) was located on LG7 and accounted for 15.8% of the phenotypic variance. Six suggestive QTL were detected on four different LGs. The linkage map and size-related QTL obtained in this study may facilitate marker-assisted selection (MAS) in bay scallop.  相似文献   

19.
Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training.  相似文献   

20.
A linkage map of the Lathyrus sativus genome was constructed using 92 backcross individuals derived from a cross between an accession resistant (ATC 80878) to ascochyta blight caused by Mycosphaerella pinodes and a susceptible accession (ATC 80407). A total of 64 markers were mapped on the backcross population, including 47 RAPD, seven sequence-tagged microsatellite site and 13 STS/CAPS markers. The map comprised nine linkage groups, covered a map distance of 803.1 cM, and the average spacing between markers was 15.8 cM. Quantitative trait loci (QTL) associated with ascochyta blight resistance were detected using single-point analysis and simple and composite interval mapping. The backcross population was evaluated for stem resistance in temperature-controlled growth room trials. One significant QTL, QTL1, was located on linkage group 1 and explained 12% of the phenotypic variation in the backcross population. A second suggestive QTL, QTL2, was detected on linkage group 2 and accounted for 9% of the trait variation. The L. sativus R-QTL regions detected may be targeted for future intergenus transfer of the trait into accessions of the closely related species Pisum sativum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号