首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Fragile X syndrome is the leading cause of inherited mental impairment and is associated with expansions of CGG repeats within the FMR1 gene. To detect expanded CGG repeats, we developed a dual-mode single-molecule fluorescence assay that allows acquisition of two parallel, independent measures of repeat number based on (1) the number of Cy3-labeled probes bound to the repeat region and (2) the physical length of the electric field-linearized repeat region, obtained from the relative position of a single Cy5 dye near the end of the repeat region. Using target strands derived from cell-line DNA with defined numbers of CGG repeats, we show that this assay can rapidly and simultaneously measure the repeats of a collection of individual sample strands within a single field of view. With a low occurrence of false positives, the assay differentiated normal CGG repeat lengths (CGG N , N = 23) and expanded CGG repeat lengths (CGG N , N = 118), representing a premutation disease state. Further, mixtures of these DNAs gave results that correlated with their relative populations. This strategy may be useful for identifying heterozygosity or for screening collections of individuals, and it is readily adaptable for screening other repeat disorders.  相似文献   

2.
Fragile X syndrome (FXS) results from a CGG-repeat expansion that triggers hypermethylation and silencing of the FMR1 gene. FXS is referred to as the most common form of inherited intellectual disability, yet its true incidence has never been measured directly by large population screening. Here, we developed an inexpensive and high-throughput assay to quantitatively assess FMR1 methylation in DNA isolated from the dried blood spots of 36,124 deidentified newborn males. This assay displays 100% specificity and 100% sensitivity for detecting FMR1 methylation, successfully distinguishing normal males from males with full-mutation FXS. Furthermore, the assay can detect excess FMR1 methylation in 82% of females with full mutations, although the methylation did not correlate with intellectual disability. With amelogenin PCR used for detecting the presence of a Y chromosome, this assay can also detect males with Klinefelter syndrome (KS) (47, XXY). We identified 64 males with FMR1 methylation and, after confirmatory testing, found seven to have full-mutation FXS and 57 to have KS. Because the precise incidence of KS is known, we used our observed KS incidence as a sentinel to assess ascertainment quality and showed that our KS incidence of 1 in 633 newborn males was not significantly different from the literature incidence of 1 in 576 (p = 0.79). The seven FXS males revealed an FXS incidence in males of 1 in 5161 (95% confidence interval of 1 in 10,653–1 in 2500), consistent with some earlier indirect estimates. Given the trials now underway for possible FXS treatments, this method could be used in newborn or infant screening as a way of ensuring early interventions for FXS.  相似文献   

3.
Expanded trinucleotide repeats underlie a growing number of human diseases. The human FMR1 (CGG)(n) array can exhibit genetic instability characterized by progressive expansion over several generations leading to gene silencing and the development of the fragile X syndrome. While expansion is dependent upon the length of uninterrupted (CGG)(n), instability occurs in a limited germ line and early developmental window, suggesting that lineage-specific expression of other factors determines the cellular environment permissive for expansion. To identify these factors, we have established normal- and premutation-length human FMR1 (CGG)(n) arrays in the yeast Saccharomyces cerevisiae and assessed the frequency of length changes greater than 5 triplets in cells deficient in various DNA repair and replication functions. In contrast to previous studies with Escherichia coli, we observed a low frequency of orientation-dependent large expansions in arrays carrying long uninterrupted (CGG)(n) arrays in a wild-type background. This frequency was unaffected by deletion of several DNA mismatch repair genes or deletion of the EXO1 and DIN7 genes and was not enhanced through meiosis in a wild-type background. Array contraction occurred in an orientation-dependent manner in most mutant backgrounds, but loss of the Sgs1p resulted in a generalized increase in array stability in both orientations. In contrast, FMR1 arrays had a 10-fold-elevated frequency of expansion in a rad27 background, providing evidence for a role in lagging-strand Okazaki fragment processing in (CGG)(n) triplet repeat expansion.  相似文献   

4.

Background

Increased rates of autoinflammatory and autoimmune disorders have been observed in female premutation carriers of CGG repeat expansion alleles of between 55–200 repeats in the fragile X mental retardation 1 (FMR1) gene. To determine whether an abnormal immune profile was present at a cellular level that may predispose female carriers to autoinflammatory conditions, we investigated dynamic cytokine production following stimulation of blood cells. In addition, splenocyte responses were examined in an FMR1 CGG knock-in mouse model of the fragile X premutation.

Methods

Human monocyte and peripheral blood leukocytes (PBLs) were isolated from the blood of 36 female FMR1 premutation carriers and 15 age-matched controls. Cells were cultured with media alone, LPS or PHA. In the animal model, splenocytes were isolated from 32 CGG knock-in mice and 32 wild type littermates. Splenocytes were cultured with media alone or LPS or PMA/Ionomycin. Concentrations of cytokines (GM-CSF, IL-1β, IL-6, IL-10, IL-13, IL-17, IFNγ, TNFα, and MCP-1) were determined from the supernatants of cellular cultures via Luminex multiplex assay. Additionally, phenotypic cellular markers were assessed on cells isolated from human subjects via flow cytometry.

Results

We found decreases in cytokine production in human premutation carriers as well as in the FMR1 knock-in mice when compared with controls. Levels of cytokines were found to be associated with CGG repeat length in both human and mouse. Furthermore, T cells from human premutation carriers showed decreases in cell surface markers of activation when compared with controls.

Conclusions

In this study, FMR1 CGG repeat expansions are associated with decreased immune responses and immune dysregulation in both humans and mice. Deficits in immune responses in female premutation carriers may lead to increased susceptibility to autoimmunity and further research is warranted to determine the link between FMR1 CGG repeat lengths and onset of autoinflammatory conditions.  相似文献   

5.
We report on a unified rapid betaine-based-PCR protocol for amplification of the (CAG)n region in Huntington disease (HD) and the (CGG)n region in Fragile X syndrome (FXS), followed by an electrophoretic separation on automated sequencer for precise determination of the triplet numbers. The high betaine concentration (2.5 M betaine) permits precise amplification of the CAG and CGG repeats. Ten HD affected patients and 10 healthy individuals from HD families were re-evaluated. For FXS the CGG region in normal individuals and premutations of about 100 repeats were precisely amplified by this protocol. Ten unrelated FXS premutation carriers and 24 mentally retarded non-FXS affected boys were re-examined by this method. The results totally coincided with the previous ones. This protocol is a good choice as a fast screening test. Within 24 h we can have preliminary information on the patient’s genetic status. Normal individuals, CGG premutation carriers up to 100 repeats, as well as HD patients carrying an expansion up to 50 CAG repeats can be easily clarified. This accounts for a relatively large proportion (about 90%) of the suspected HD and FXS patients, referred to our laboratory for genetic analysis. The calculation of the repeat’s number is more accurate for the correct interpretation of the results, screening tests and genetic counselling.  相似文献   

6.
Highlights? DGCR8 binds to CGG RNA repeats, cause of the neurodegenerative FXTAS disease ? DGCR8 and its partner, DROSHA, are sequestered within CGG RNA aggregates ? DGCR8 rescues the neuronal cell death induced by expanded CGG RNA repeats ? MicroRNA processing is impaired in patients with FXTAS  相似文献   

7.
Visual sensory impairments are common in Mental Deficiency (MD) and Autism Spectrum Disorder (ASD). These defects are linked to cerebral dysfunction in the visual cortical area characterized by the deregulation of axon growth/guidance and dendrite spine immaturity of neurons. However, visual perception had not been addressed, although the retina is part of the central nervous system with a common embryonic origin. Therefore, we investigated retinal perception, the first event of vision, in a murine model of MD with autistic features. We document that retinal function is altered in Fmr1 KO mice, a model of human Fragile X Syndrome. Indeed, In Fmr1 KO mice had a lower retinal function characterized by a decreased photoreceptors neuron response, due to a 40% decrease in Rhodopsin content and to Rod Outer Segment destabilization. In addition, we observed an alteration of the visual signal transmission between photoreceptors and the inner retina which could be attributed to deregulations of pre- and post- synaptic proteins resulting in retinal neurons synaptic destabilization and to retinal neurons immaturity. Thus, for the first time, we demonstrated that retinal perception is altered in a murine model of MD with autistic features and that there are strong similarities between cerebral and retinal cellular and molecular defects. Our results suggest that both visual perception and integration must be taken into account in assessing visual sensory impairments in MD and ASD.  相似文献   

8.
Fragile X syndrome is a common inherited form of mental retardation caused by the lack of fragile X mental retardation protein (FMRP) because of Fmr1 gene silencing. Serotonin (5-HT) is significantly increased in the null mutants of Drosophila Fmr1, and elevated 5-HT brain levels result in cognitive and behavioral deficits in human patients. The serotonin type 2A receptor (5-HT2AR) is highly expressed in the cerebral cortex; it acts on pyramidal cells and GABAergic interneurons to modulate cortical functions. 5-HT2AR and FMRP both regulate synaptic plasticity. Therefore, the lack of FMRP may affect serotoninergic activity. In this study, we determined the involvement of FMRP in the 5-HT modulation of synaptic potentiation with the use of primary cortical neuron culture and brain slice recording. Pharmacological inhibition of 5-HT2AR by R-96544 or ketanserin facilitated long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of WT mice. The prefrontal LTP induction was dependent on the activation of NMDARs and elevation of postsynaptic Ca2+ concentrations. By contrast, inhibition of 5-HT2AR could not restore the induction of LTP in the ACC of Fmr1 knock-out mice. Furthermore, 5-HT2AR inhibition induced AMPA receptor GluR1 subtype surface insertion in the cultured ACC neurons of Fmr1 WT mice, however, GluR1 surface insertion by inhibition of 5-HT2AR was impaired in the neurons of Fmr1KO mice. These findings suggested that FMRP was involved in serotonin receptor signaling and contributed in GluR1 surface expression induced by 5-HT2AR inactivation.  相似文献   

9.
Behavioral intervention therapy has proven beneficial in the treatment of autism and intellectual disabilities (ID), raising the possibility of certain changes in molecular mechanisms activated by these interventions that may promote learning. Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by autistic features and intellectual disability and can serve as a model to examine mechanisms that promote learning. FXS results from mutations in the fragile X mental retardation 1 gene (Fmr1) that prevents expression of the Fmr1 protein (FMRP), a messenger RNA (mRNA) translation regulator at synapses. Among many other functions, FMRP organizes a complex with the actin cytoskeleton-regulating small Rho GTPase Rac1. As in humans, Fmr1 KO mice lacking FMRP display autistic-like behaviors and deformities of actin-rich synaptic structures in addition to impaired hippocampal learning and synaptic plasticity. These features have been previously linked to proper function of actin remodeling proteins that includes Rac1. An important step in Rac1 activation and function is its translocation to the membrane, where it can influence synaptic actin cytoskeleton remodeling during hippocampus-dependent learning. Herein, we report that Fmr1 KO mouse hippocampus exhibits increased levels of membrane-bound Rac1, which may prevent proper learning-induced synaptic changes. We also determine that increasing training intensity during fear conditioning (FC) training restores contextual memory in Fmr1 KO mice and reduces membrane-bound Rac1 in Fmr1 KO hippocampus. Increased training intensity also results in normalized long-term potentiation in hippocampal slices taken from Fmr1 KO mice. These results point to interventional treatments providing new therapeutic options for FXS-related cognitive dysfunction.  相似文献   

10.
We have discovered a distinct DNA-methylation boundary at a site between 650 and 800 nucleotides upstream of the CGG repeat in the first exon of the human FMR1 gene. This boundary, identified by bisulfite sequencing, is present in all human cell lines and cell types, irrespective of age, gender, and developmental stage. The same boundary is found also in different mouse tissues, although sequence homology between human and mouse in this region is only 46.7%. This boundary sequence, in both the unmethylated and the CpG-methylated modes, binds specifically to nuclear proteins from human cells. We interpret this boundary as carrying a specific chromatin structure that delineates a hypermethylated area in the genome from the unmethylated FMR1 promoter and protecting it from the spreading of DNA methylation. In individuals with the fragile X syndrome (FRAXA), the methylation boundary is lost; methylation has penetrated into the FMR1 promoter and inactivated the FMR1 gene. In one FRAXA genome, the upstream terminus of the methylation boundary region exhibits decreased methylation as compared to that of healthy individuals. This finding suggests changes in nucleotide sequence and chromatin structure in the boundary region of this FRAXA individual. In the completely de novo methylated FMR1 promoter, there are isolated unmethylated CpG dinucleotides that are, however, not found when the FMR1 promoter and upstream sequences are methylated in vitro with the bacterial M-SssI DNA methyltransferase. They may arise during de novo methylation only in DNA that is organized in chromatin and be due to the binding of specific proteins.  相似文献   

11.
12.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号