首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
【目的】新疆油田六中区为典型水驱普通稠油油藏,水驱效果较差,油藏具有丰富的内源微生物,本研究通过分析内源微生物驱油对油藏微生物活动的影响,确定内源微生物驱油技术在该类油藏的应用潜力。【方法】采用高通量测序及分析化学技术,系统研究实施内源微生物驱油技术后油藏细菌群落结构组成、细菌总数和功能菌群的浓度以及采出液的流体性质,总结内源微生物驱油对油藏微生物活动的影响。【结果】现场试验注入激活剂和空气后,内源微生物被显著激活,细菌群落结构发生明显变化,细菌总数及功能菌群浓度普遍提高了2–3个数量级;各种内源微生物代谢活动显著增强,与地层流体相互作用后,原油明显被乳化,最终石油采收率提高5.2%。【结论】对于内源微生物较为丰富的水驱普通稠油油藏,内源微生物驱油技术对油藏微生物活动的影响显著,具有显著的技术优势和较大的应用潜力,微生物群落结构、功能菌群浓度及其相关代谢产物可以作为评价内源微生物驱油现场激活效果的重要指标,为其他内源微生物驱油现场试验提供技术参考。  相似文献   

2.
油藏是一个高温、高压、少氧、寡营养和封闭的极端环境,油田经过多年注水开发后,在油藏内部形成了相对稳定的微生物群落体系,这些微生物以石油烃分解为起始,形成了一个复杂的食物链,对油藏碳、硫和金属离子的元素地球化学循环起着非常重要的作用。微生物提高原油采收率技术(MEOR)是利用微生物及其代谢产物与油藏和原油发生作用来提高原油采收率的一种新技术,具有成本低、适应性强和环境友好等特点,因此有望成为未来化学驱后油藏和高含水油藏进一步提高采收率的重要手段。对油藏内源微生物及其介导的生化反应,微生物采油原理、发展历程和现场试验进行综述,并提出了未来的发展方向。  相似文献   

3.
The influence of bacterial biomass on hydraulic properties of porous media (bioclogging) has been explored as a viable means for optimizing subsurface bioremediation and microbial enhanced oil recovery. In this study, we present a pore network simulator for modeling biofilm evolution in porous media including hydrodynamics and nutrient transport based on coupling of advection transport with Fickian diffusion and a reaction term to account for nutrient consumption. Biofilm has non‐zero permeability permitting liquid flow and transport through the biofilm itself. To handle simultaneous mass transfer in both liquid and biofilm in a pore element, a dual‐diffusion mass transfer model is introduced. The influence of nutrient limitation on predicted results is explored. Nutrient concentration in the network is affected by diffusion coefficient for nutrient transfer across biofilm (compared to water/water diffusion coefficient) under advection dominated transport, represented by mass transport Péclet number >1. The model correctly predicts a dependence of rate of biomass accumulation on inlet concentration. Poor network connectivity shows a significantly large reduction of permeability, for a small biomass pore volume. Biotechnol. Bioeng. 2011;108: 2413–2423. © 2011 Wiley Periodicals, Inc.  相似文献   

4.
In order to research oil displacement mechanism by indigenous microbial communities under reservoir conditions, indigenous microbial flooding experiments using the endogenous mixed bacterium from Shengli Oilfield were carried out. Through microscopic simulation visual model, observation and analysis of distribution and flow of the remaining oil in the process of water flooding and microbial oil displacement were conducted under high temperature and high pressure conditions. Research has shown that compared with atmospheric conditions, the growth of the microorganism metabolism and attenuation is slowly under high pressure conditions, and the existence of the porous medium for microbial provides good adhesion, also makes its growth cycle extension. The microbial activities can effectively launch all kinds of residual oil, and can together with metabolites, enter the blind holes off which water flooding, polymer flooding and gas flooding can’t sweep, then swap out remaining oil, increase liquidity of the crude oil and remarkably improve oil displacement effect.  相似文献   

5.
青海油田微生物采油技术研究   总被引:3,自引:0,他引:3  
从青海油田地层水中分离培养出4株微生物菌种,对其进行了耐温性、耐盐性等进行了探讨,分析了微生物处理前后原油组份及物性变化情况,并采用岩芯流动试验探讨了微生物的驱油效果。结果表明,这几种微生物菌种均能适应青海油田温度及高矿化度地层环境,作用于原油后对原油中的长链饱和烃类物质有较好的降解作用,能使其分子链变短,并产生有机酸或石油羧酸盐类表面活性剂等低分子物质,使原油的粘度、凝点及蜡含量均出现明显的下降,改善原油的流动性能。提高石油采收率。2口井的现场试验证明,微生物采油具有良好的提高石油采收率的效果和清蜡减阻效果。  相似文献   

6.
Depth profiles of Fe, Mn, (HS)t, Cu and Cd concentrations in pore water were determined on a seasonal scale in intertidal sediments of Ria Formosa. Concentrations of Cu and Cd were also determined in near-bottom water during the short period that water inundates the sediment. A maximum near the sediment-water interface was observed in depth profiles of Mn and Fe concentrations followed by a decrease with depth. Otherwise, depth profiles of (HS)t were irregular but peak concentrations was observed below Mn and Fe maximum. Although subsurface maximum was observed at deeper layers for Cu and Cd, the profiles shape varied among sites and sampling dates. This suggests site specificity and alterations associated with early diagenetic reactions. In order to assess exchanges of Cu and Cd across the sediment water interface, diffusive fluxes and advective transport were estimated. Both contribute substantially to the daily transfer of Cd from intertidal sediments to the water column of Ria Formosa. In the case of Cu, the flux associated with tidal flooding (advective flux) was the major contributor. Presumably, the exchange of trace elements between the sediment-water interface in intertidal areas of macro- and meso-tidal systems are underestimated since do not take into consideration the pulse contribution associated with tidal flooding.  相似文献   

7.
超低渗油藏微生物吞吐技术的矿场试验   总被引:3,自引:0,他引:3  
【目的】通过对渭北低渗油藏内源微生物的研究,考察分离纯化的内源解烃菌产生表面活性剂和降解原油的能力、岩心驱替增油效率,同时验证其在超低渗油田单井吞吐矿场实验的应用效果,探讨微生物采油技术在超低渗油田提高采收率的工艺和可行性。【方法】采集超低渗油藏的油水样,应用油平板进行产表面活性剂解烃菌的分离,通过生理生化特性和16S r RNA基因序列分析对菌株进行种属鉴定,评价其油藏环境适应性,利用内源-外源功能微生物复配体系进行原油降解,在填砂管和岩心物模上进行驱油实验,将优化好的微生物复配体系应用于现场实施单井吞吐工艺的实验。【结果】从渭北某区块超低渗油藏的原油样品中分离得到一株铜绿假单胞菌(Pseudomonas aeruginosa),命名为WB-001。该菌株可使发酵液的表面张力降至29.04 m N/m,使渭北原油蜡质含量降至8.48%。填砂管实验表明WB-001与外源枯草芽胞杆菌OPUS-HOB-001(Bacillus subtilis)复配后,驱油效率较单纯水驱提高了9.72%;岩心驱替实验较水驱提高12.54%。微生物单井吞吐措施后,平均日产油由措施前的0.42 t增加到0.89 t,累计增油44.47 t;原油降粘率为11.70%,降凝率为9.41%,采出水表面张力降低幅度为18.93%。【结论】通过详细的室内评估和成功的矿场实验,证明微生物采油技术在超低渗油藏有一定的应用可行性,并为后续规模化应用提供了理论基础和物质基础,为超低渗油田的高效精细开发探索一条新的途径。  相似文献   

8.
Elevated ultraviolet‐B (UVB) radiation has been reported to have few effects on plants but to alter the soil microbial community composition. However, the effects on soil microorganisms have to be mediated via plants, because direct radiation effects are only plausible on the uppermost millimeters of soil. Here, we assessed secondary effects of UVB on soil microbes. The responses in the dominant plant Eriophorum russeolum, peat pore water and microbial communities in the peat were recorded at a subarctic mire in the middle of the third growing season under field exposure simulating 20% depletion in the ozone layer. The UVB treatment significantly reduced the sucrose and the total soluble sugar (sucrose+glucose+fructose) concentration of the plant leaves while increasing the sucrose concentration in the belowground storage organ rhizome. The starch concentration of the leaves was also slightly reduced by elevated UVB. In the plant roots, carbohydrate concentrations remained unaffected but the total phenolics concentration increased under elevated UVB. We suggest that the simultaneously observed decrease in bacterial growth rate and the altered bacterial community composition are due to UVB‐induced changes in the plant photosynthate allocation and potential changes in root exudation. There were no effects of elevated UVB on microbial biomass, peat pore water or nutrient concentrations in the peat. The observed responses are in line with the previously reported lower ecosystem dark respiration under elevated UVB, and they signify that the changed plant tissue quality and lower bacterial activity are likely to reduce decomposition.  相似文献   

9.
In this article, a new mechanism influencing the transport of microorganisms through unsaturated porous media is examined, and a new method for directly visualizing bacterial behavior within a porous medium under controlled chemical and flow conditions is introduced. Resting cells of hydrophilic and relatively hydrophobic bacterial strains isolated from groundwater were used as model microorganisms. The degree of hydrophobicity was determined by contact-angle measurements. Glass micromodels allowed the direct observation of bacterial behavior on a pore scale, and three types of sand columns with different gas saturations provided quantitative measurements of the observed phenomena on a porous medium scale. The reproducibility of each break-through curve was established in three to five repeated experiments. The data collected from the column experiments can be explained by phenomena directly observed in the micromodel experiments. The retention rate of bacteria is proportional to the gas saturation in porous media because of the preferential sorption of bacteria onto the gas-water interface over the solid-water interface. The degree of sorption is controlled mainly by cell surface hydrophobicity under the simulated groundwater conditions because of hydrophobic forces between the organisms and the interfaces. The sorption onto the gas-water interface is essentially irreversible because of capillary forces. This preferential and irreversible sorption at the gas-water interface strongly influences the movement and spatial distribution of microorganisms.  相似文献   

10.
Increasing amounts of livestock manure are being applied to agricultural soil, but it is unknown to what extent this may be associated with contamination of aquatic recipients and groundwater if microorganisms are transported through the soil under natural weather conditions. The objective of this study was therefore to evaluate how injection and surface application of pig slurry on intact sandy clay loam soil cores influenced the leaching of Salmonella enterica serovar Typhimurium bacteriophage 28B, Escherichia coli, and Cryptosporidium parvum oocysts. All three microbial tracers were detected in the leachate on day 1, and the highest relative concentration was detected on the fourth day (0.1 pore volume). Although the concentration of the phage 28B declined over time, the phage was still found in leachate at day 148. C. parvum oocysts and chloride had an additional rise in the relative concentration at a 0.5 pore volume, corresponding to the exchange of the total pore volume. The leaching of E. coli was delayed compared with that of the added microbial tracers, indicating a stronger attachment to slurry particles, but E. coli could be detected up to 3 months. Significantly enhanced leaching of phage 28B and oocysts by the injection method was seen, whereas leaching of the indigenous E. coli was not affected by the application method. Preferential flow was the primary transport vehicle, and the diameter of the fractures in the intact soil cores facilitated transport of all sizes of microbial tracers under natural weather conditions.  相似文献   

11.
Identification of the functional groups of microorganisms that are predominantly in control of fluxes through, and concentrations in, microbial networks would benefit microbial ecology and environmental biotechnology: the properties of those controlling microorganisms could be studied or monitored specifically or their activity could be modulated in attempts to manipulate the behaviour of such networks. Herein we present ecological control analysis (ECA) as a versatile mathematical framework that allows for the quantification of the control of each functional group in a microbial network on its process rates and concentrations of intermediates. In contrast to current views, we show that rates of flow of matter are not always limited by a single functional group; rather flux control can be distributed over several groups. Also, control over intermediate concentrations is always shared. Because of indirect interactions, through other functional groups, the concentration of an intermediate can also be controlled by functional groups not producing or consuming it. Ecological control analysis is illustrated by a case study on the anaerobic degradation of organic matter, using experimental data obtained from the literature. During anaerobic degradation, fermenting microorganisms interact with terminal electron-accepting microorganisms (e.g. halorespirers, methanogens). The analysis indicates that flux control mainly resides with fermenting microorganisms, but can shift to the terminal electron-accepting microorganisms under less favourable redox conditions. Paradoxically, halorespiring microorganisms do not control the rate of perchloroethylene and trichloroethylene degradation even though they catalyse those processes themselves.  相似文献   

12.
Microbial adhesion at the oil-water interface is a subject of both basic interest (e.g., as a technique for the measurement of hydrophobicity) and applied interest (e.g., for use in two-phase oil-water mouthwashes for the desorption of oral microorganisms). In general, surfactants inhibit microbial adhesion to oils and other hydrophobic surfaces. In the present study, we demonstrated that the cationic surfactant cetylpyridinium chloride (CPC) significantly enhanced microbial adhesion to hexadecane and various oils, as well as to the solid hydrophobic surface polystyrene. CPC increased adhesion to hexadecane of Escherichia coli, Candida albicans and Acinetobacter calcoaceticus MR-481 and of expectorated oral bacteria from near 0% to over 90%. The CPC concentration required for optimal enhancement of adhesion was a function of the initial cell density. This phenomenon was inhibited by high salt concentrations and, in the case of E. coli, by a low pH. CPC-pretreated cells were able to bind to hexadecane, but CPC-pretreated hexadecane was unable to bind untreated cells. Another cationic, surface-active antimicrobial agent, chlorhexidine gluconate, was similarly able to promote microbial adhesion to hexadecane. The results suggest that (i) CPC enhances microbial adhesion to hexadecane by binding via electrostatic interactions at the cell surface, thus diminishing surface charge and increasing cell surface hydrophobicity, and (ii) this phenomenon may have applications in oral formulations and in the use of hydrocarbon droplets as a support for cell immobilization.  相似文献   

13.
Due to intrinsic properties, solid-state nanopores are widely used in nanopore technology. Different geometries (cylindrical (CY), hourglass (HG) and conical (CO)) of artificial nanopores have been fabricated and studied. Each was found to promote different transport abilities experimentally. To explore such pore effects, the combination of finite element (FE) and molecular dynamics (MD) simulations with applied electric filed (150 mV) were performed. The dimension of anion-selective protein pore was used as a nanopore template. Different pore geometries with a narrowest diameter ranging from 1.8 to 1.8 μm were studied here. Firstly, we found that the narrowest regions at a pore orifice in CO and constriction site in HG maximise water velocity and consequently control a water flow rate. Secondly, CY triggers the highest water flux, but low ion selectivity, whilst the funnel-like geometries (HG and CO) enhance the ion selectivity significantly. Both HG and CO show similar degrees of permeant flux and selectivity. The orifice and constriction site in CO and HG are the main player for selectivity and permeation control. Thirdly, the transport properties are tuneable by changing the flow direction in asymmetric CO pore. The tip-to-base flow in CO obviously promotes stronger anion selectivity than the base-to-tip one.  相似文献   

14.
A mathematical model composed of a direct proportionality relationship between bulk water velocities and field-determined second-order microbial transformation rate coefficients, and the relative rate coefficient of a benchmark chemical, was developed for estimating the substrate removal rates of rapidly degraded chemicals by attached organisms in shallow (<1 m deep) aquatic ecosystems. Data from 31 field experiments involving the addition of 2,4-dichlorophenoxyacetic acid methyl ester (2,4-DME) in nine field areas were used to determine a field-derived second-order rate coefficient for microbial transformation of the ester. By using 2,4-DME as a benchmark chemical, the model was used to predict microbial transformation rates of the butoxyethyl ester of 2,4-dichlorophenoxyacetic acid (2,4-DBE) at five other field sites. The predicted half-lives of 2,4-DBE varied 1,500-fold and were within about a threefold range or less of the measured half-lives. Under conditions of mass transport limitation, the contributions of attached microorganisms relative to total microbial activities at various field sites were related to the ratio of water velocity, U, and depth, D, showing that historical definitions of ecosystems according to flow and depth characteristics are also valid for describing the process-related structure of ecosystems. An equation was developed for predicting the relative contributions of attached and suspended communities with values of U and D for lotic and lentic ecosystems. On the basis of this equation, attached microorganisms were expected to be insignificant in deep lentic ecosystems and suspended microorganisms were expected to be insignificant in shallow lotic systems for the same process carried out by both populations. Neglecting epiphytic microorganisms, both suspended and attached organisms were expected to be significant in wetlands.  相似文献   

15.
Three strains of Pseudomonas fluorescens with different motility rates and adsorption rate coefficients were injected into porous-medium reactors packed with l-mm-diameter glass spheres. Cell breakthrough, time to peak concentration, tailing, and cell recovery were measured at three interstitial pore velocities (higher than, lower than, and much lower than the maximal bacterial motility rate). All experiments were done with distilled water to reduce the effects of growth and chemotaxis. Contrary to expectations, motility did not result in either early breakthrough or early time to peak concentration at flow velocities below the motility rate. Bacterial size exclusion effects were shown to affect breakthrough curve shape at the very low flow velocity, but no such effect was seen at the higher flow velocity. The tendency of bacteria to adsorb to porous-medium surfaces, as measured by adsorption rate coefficients, profoundly influenced transport characteristics. Cell recoveries were shown to be correlated with the ratio of advective to adsorptive transport in the reactors. Adsorption rate coefficients were found to be better predictors of microbial transport phenomena than individual characteristics, such as size, motility, or porous-medium hydrodynamics.  相似文献   

16.
The transport of microbial biomass and suspended material in a high-marsh creek was investigated during four 40-h tidal studies throughout the year. Although considerable differences were noted between successive tidal cycles, overall the creek was found to be an exporting system and transported a mean concentration of ATP (-33g), chlorophyll a (-66g), particulate organic carbon (-31kg), total suspended material (-344kg), and fixed suspended material (-195kg) during each tidal cycle. This net outward flux of materials was associated with a net flow of water out of creek, while the net import of aerobic, heterotrophic bacteria (43 x 10(12)) and volatile suspended material (238kg) was generally due to higher mean concentrations of these materials per unit volume of water during the flooding tide. Also the latter generally were associated with increased amounts of suspended material suggesting an association between bacteria and suspended matter.  相似文献   

17.
Microbial abundance in the rhizosphere: A computer model   总被引:7,自引:1,他引:6  
Summary A mathematical model is described which can predict the abundance of microorganisms in the rhizosphere (as g microbial dry weight/cm3 soil) in relation to distance from the root surface and time since the root started exuding substrate. The growth rate of the microorganisms at each point in the soil is assumed to be controlled by the concentration of soluble organic substrate. The concentration of substrate changes due to (1) its production by the root and diffusion through the soil, (2) its production in the soil by breakdown of insoluble organic matter, and (3) its use by the microorganisms. Values for all of the required input parameters have been obtained from the literature.The model predicts that a high population density will develop near the root surface, but the density will fall off steeply with increasing distance from the root. At the root surface microbial growth continues for many days, provided exudation by the root continues at a steady rate, but further away the population reaches a peak and then declines. This is because the amount of substrate reaching the outer soil is no longer adequate to support the maintenance requirement of the population. Starting with a microbial concentration of 2 g/cm3, and using what are considered to be average values for other input parameters, the microbial concentrations predicted after 10 days are 1509 g/cm3 at the root surface, and 2.2 g/cm3 at 1.8 mm from the root. The model also predicts the substrate concentrations in the soil: these reach a maximum within the first day and then decline, reaching by 10 days values not very different from those in root-free soil.The model is used to predict the effect on microbial and substrate concentrations of changes in soil water content, root density, root exudation rate, initial microbial concentration and microbial response to substrate concentration. Where the predictions of the model can be tested against observed data there is good agreement. re]19760308  相似文献   

18.
In recent years, reuse of municipal waste water as the coolant in drift-producing cooling towers at electrical generating plants has become increasingly common. A hueristic model is presented that can be used to estimate the concentrations of viable airborne microbes in the drift from a wet cooling tower given the concentration of microbes in the cooling tower. The purpose of this presentation is to allow the nonmeteorologist to understand the factors affecting airborne concentration and to make crude estimates of ground-level concentrations of airborne microorganisms. Concentrations are calculated using a standard meterological method, the Gaussian dispersion model, in which terms have been included for droplet settling and microbial death rate.On assignment from the National Oceanic and Atmospheric Administration, U.S. Department of Commerce.  相似文献   

19.
Two types of experiments were performed to study the reversibility of interfacial adsorption of pancreatic lipase (PL) to fat droplets during lipolysis. Lipolysis was measured in olive oil/gum arabic emulsions containing radiolabeled triolein in the presence of bile salts and lecithin at rate-limiting concentrations of porcine PL (PPL) or human PL (HPL). The lipolysis rate in a labeled emulsion, i.e. release of [(14)C]oleic acid, was immediately reduced by around 50% upon dilution with an equal amount of an unlabeled emulsion. Further, lipolysis was rapidly and completely suppressed when a non-exchanging lipase inhibitor was present in the second emulsion. These results indicate hopping of lipase between emulsion droplets. Alternative explanations were excluded. Hopping of PL between triolein droplets stabilized with gum arabic at supramicellar bile salt concentrations was observed only in the presence, not in the absence, of lecithin. Displacement from a trioctanoin-water interface of active HPL by an inactive mutant (S152G) was studied in the presence of bile salts by measuring HPL distribution between the water phase and the oil-water interface. Colipase was limiting for HPL binding to the oil-water interface (colipase to lipase molar ratio: 0.5) and, thus, for lipolysis. Upon adding S152G, which has the same affinity for colipase, inactive and active HPL were found to compete for binding at the oil-water interface. When equal amounts of HPL and HPL S152G were used, the lipolysis rate dropped to half the maximum rate recorded with HPL alone, suggesting that half the active HPL was rapidly desorbed from the oil-water interface. Therefore, under various conditions, PL does not remain irreversibly adsorbed to the oil-water interface, but can exchange rapidly between oil droplets, via an equilibrium between soluble and lipid-bound PL.  相似文献   

20.
本文采用原位诱导有益微生物(污水菌、芽胞杆菌、硝化菌和副球菌等),复合添加外源的有益微生物(金藻、栅藻、硅藻、芽胞杆菌、光合菌、酵母菌和EM(effective microorganisms)菌等),在养殖水体中建立稳定的有益微生物复合菌群,使水体中亚硝酸氮和氨氮清除率分别可达100%和99%。并进一步利用这些菌群在小红鲫鱼(red crucian carp)和南美白对虾(Penaeus vannamei)养殖中进行原位水质净化应用。在小红鲫鱼养殖水质原位自净中,无需清污和换水,就可长期维持水环境完全稳定,连续养殖50 d以上,水中未检测出亚硝酸氮,氨氮低于0.2 mg/L,稳定在优质安全的养殖环境;在南美白对虾养殖中,投菌后初期水体亚硝酸氮较快下降,第10 d后氨氮浓度也降至养殖安全范围内,形成稳定安全的养殖水质环境。实验效果显著,表明微生物菌群原位水质自净技术具有推广应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号