首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ras-related GTPases of the Miro family have been implicated in mitochondrial homeostasis and microtubule-dependent transport. They consist of two GTP-binding domains separated by calcium-binding motifs and of a C-terminal transmembrane domain that targets the protein to the outer mitochondrial membrane. We disrupted the single Miro-encoding gene in Dictyostelium discoideum and observed a substantial growth defect that we attribute to a decreased mitochondrial mass and cellular ATP content. However, mutant cells even showed an increased rate of oxygen consumption, while glucose consumption, mitochondrial transmembrane potential and production of reactive oxygen species were unaltered. Processes characteristic of the multicellular stage of the D. discoideum life cycle were also unaltered. Although mitochondria occasionally use microtubules for transport in D. discoideum, their size and distribution were not visibly affected. We found Miro in all branches of the eukaryotic tree with the exception of a few protist lineages (mainly those lacking typical mitochondria). Trypanosomatids and ciliates possess structurally unique homologs lacking the N-terminal or the C-terminal GTPase domain, respectively. We propose that in D. discoideum, as in yeasts and plants, Miro plays roles in mitochondrial homeostasis, but the ability to build a complex that regulates its association to kinesin for microtubule-dependent transport probably arose in metazoans.  相似文献   

2.
Chloroplast biogenesis is tightly linked with embryogenesis and seedling development. A growing body of work has been done on the molecular mechanisms underlying chloroplast development; however, the molecular components involved in chloroplast biogenesis during embryogenesis remain largely uncharacterized. In this paper, we show that an Arabidopsis mutant carrying a T‐DNA insertion in a gene encoding a multiple membrane occupation and recognition nexus (MORN)‐containing protein exhibits severe defects during embryogenesis, producing abnormal embryos and thereby leading to a lethality of young seedlings. Genetic and microscopic studies reveal that the mutation is allelic to a previously designated Arabidopsis embryo‐defective 1211 mutant (emb1211). The emb1211 +/? mutant plants produce approximately 25% of white‐colored ovules with abnormal embryos since late globular stage when primary chloroplast biogenesis takes place, while the wild‐type plants produce all green ovules. Transmission electron microscopic analysis reveals the absence of normal chloroplast development, both in the mutant embryos and in the mutant seedlings, that contributes to the albinism. The EMB1211 gene is preferentially expressed in developing embryos as revealed in the EMB1211::GUS transgenic plants. Taken together, the data indicate that EMB1211 has an important role during embryogenesis and chloroplast biogenesis in Arabidopsis.  相似文献   

3.
Nitric oxide associated-1 (NOA1) is an evolutionarily conserved guanosine triphosphate (GTP) binding protein that localizes predominantly to mitochondria in mammalian cells. On the basis of bioinformatic analysis, we predicted its possible involvement in ribosomal biogenesis, although this had not been supported by any experimental evidence. Here we determine NOA1 function through generation of knockout mice and in vitro assays. NOA1-deficient mice exhibit midgestation lethality associated with a severe developmental defect of the embryo and trophoblast. Primary embryonic fibroblasts isolated from NOA1 knockout embryos show deficient mitochondrial protein synthesis and a global defect of oxidative phosphorylation (OXPHOS). Additionally, Noa1–/– cells are impaired in staurosporine-induced apoptosis. The analysis of mitochondrial ribosomal subunits from Noa1–/– cells by sucrose gradient centrifugation and Western blotting showed anomalous sedimentation, consistent with a defect in mitochondrial ribosome assembly. Furthermore, in vitro experiments revealed that intrinsic NOA1 GTPase activity was stimulated by bacterial ribosomal constituents. Taken together, our data show that NOA1 is required for mitochondrial protein synthesis, likely due to its yet unidentified role in mitoribosomal biogenesis. Thus, NOA1 is required for such basal mitochondrial functions as adenosine triphosphate (ATP) synthesis and apoptosis.  相似文献   

4.
Regulating the morphology and intracellular distribution of mitochondria is essential for embryo development in animals. However, the importance of such regulation is not clearly defined in plants. The evolutionarily conserved Miro proteins are known to be involved in the regulation of mitochondrial morphology and motility. We previously demonstrated that MIRO1, an Arabidopsis thaliana orthologue of the Miro protein, is required for embryogenesis. An insertional mutation in the MIRO1 gene causes arrest of embryonic cell division, leading to abortion of the embryo at an early stage. Here we investigated the role of MIRO1 in the regulation of mitochondrial behaviour in egg cells and early-stage embryos using GFP-labeled mitochondria. Two-photon laser scanning microscopy revealed that, in miro1 mutant egg cells, mitochondria are abnormally enlarged, although egg cell formation is nearly unaffected. After fertilization and subsequent zygotic cell division, the homozygous miro1 mutant two-celled embryo contained a significantly reduced number of mitochondria in its apical cell compared with the wild type, suggesting that the miro1 mutation inhibits proper intracellular distribution of mitochondria, leading to an arrest of embryonic cell division. Our findings suggest that proper mitochondrial morphology and intracellular distribution are maintained by MIRO1 and are vital for embryonic cell division.  相似文献   

5.
Arabidopsis NSN1 encodes a nucleolar GTP-binding protein and is required for flower development. Defective flowers were formed in heterozygous nsn1/+?plants. Homozygous nsn1 plants were dwarf and exhibited severe defects in reproduction. Arrests in embryo development in nsn1 could occur at any stage of embryogenesis. Cotyledon initiation and development during embryogenesis were distorted in nsn1 plants. At the seedling stage, cotyledons and leaves of nsn1 formed upward curls. The curled leaves developed meristem-like outgrowths or hyperplasia tissues in the adaxial epidermis. Long and enlarged pavement cells, characteristic of the abaxial epidermis of wild type plants, were found in the adaxial epidermis in nsn1 leaves, suggesting a disoriented leaf polarity in the mutant. The important role of NSN1 in embryo development and leaf differentiation was consistent with the high level expression of the NSN1 gene in the developing embryos and the primordia of cotyledons and leaves. The CLAVATA 3 (CLV3) gene, a stem cell marker in the Arabidopsis shoot apical meristem (SAM), was expressed in expanded regions surrounding the SAM of nsn1 plants, and induced ectopically in the meristem-like outgrowths in cotyledons and leaves. The nsn1 mutation up-regulated the expression levels of several genes implicated in the meristem identity and the abaxial cell fate, and repressed the expression of other genes related to the specification of cotyledon boundary and abaxial identity. These results demonstrate that NSN1 represents a novel GTPase required for embryogenesis, leaf development and leaf polarity establishment in Arabidopsis.  相似文献   

6.
Wu Y  Yan J  Zhang R  Qu X  Ren S  Chen N  Huang S 《The Plant cell》2010,22(11):3745-3763
Actin cables in pollen tubes serve as molecular tracks for cytoplasmic streaming and organelle movement and are formed by actin bundling factors like villins and fimbrins. However, the precise mechanisms by which actin cables are generated and maintained remain largely unknown. Fimbrins comprise a family of five members in Arabidopsis thaliana. Here, we characterized a fimbrin isoform, Arabidopsis FIMBRIN5 (FIM5). Our results show that FIM5 is required for the organization of actin cytoskeleton in pollen grains and pollen tubes, and FIM5 loss-of-function associates with a delay of pollen germination and inhibition of pollen tube growth. FIM5 decorates actin filaments throughout pollen grains and tubes. Actin filaments become redistributed in fim5 pollen grains and disorganized in fim5 pollen tubes. Specifically, actin cables protrude into the extreme tips, and their longitudinal arrangement is disrupted in the shank of fim5 pollen tubes. Consequently, the pattern and velocity of cytoplasmic streaming were altered in fim5 pollen tubes. Additionally, loss of FIM5 function rendered pollen germination and tube growth hypersensitive to the actin-depolymerizing drug latrunculin B. In vitro biochemical analyses indicated that FIM5 exhibits actin bundling activity and stabilizes actin filaments. Thus, we propose that FIM5 regulates actin dynamics and organization during pollen germination and tube growth via stabilizing actin filaments and organizing them into higher-order structures.  相似文献   

7.
We report that a fatty acyl transferase, endophilin B1, is required for maintenance of mitochondrial morphology. Down-regulation of this protein or overexpression of endophilin B1 lacking the NH(2)-terminal lipid-modifying domain causes striking alterations of the mitochondrial distribution and morphology. Dissociation of the outer mitochondrial membrane compartment from that of the matrix, and formation of vesicles and tubules of outer mitochondrial membrane, was also observed in both endophilin B1 knockdown cells and after overexpression of the truncated protein, indicating that endophilin B1 is required for the regulation of the outer mitochondrial membrane dynamics. We also show that endophilin B1 translocates to the mitochondria during the synchronous remodeling of the mitochondrial network that has been described to occur during apoptosis. Double knockdown of endophilin B1 and Drp1 leads to a mitochondrial phenotype identical to that of the Drp1 single knockdown, a result consistent with Drp1 acting upstream of endophilin B1 in the maintenance of morphological dynamics of mitochondria.  相似文献   

8.
Li HM  Chen H  Yang ZN  Gong JM 《FEBS letters》2012,586(7):1027-1031
Pollen germination and tube growth are of essential importance to sexual reproduction of flowering plants. Several biological processes including cell wall biosynthesis and modification are known to be involved in pollen tube growth, though the underlying molecular mechanisms remain largely to be investigated. Here we report the identification and functional characterization of the Arabidopsis gene Cdi, which encodes a putative nucleotide-diphospho-sugar transferase. Cdi is preferentially expressed in pollen grains and pollen tubes. Transient expression of Cdi:GFP fusion protein showed that CDI is localized in the cytosol. Mutation in Cdi impaired pollen germination and pollen tube growth thus leading to disrupted male transmission. These results suggest that Cdi is an essential gene required for pollen germination and tube growth.  相似文献   

9.
10.
Lectin receptor-like kinases (Lectin RLKs) are a large family of receptor-like kinases with an extracellular legume lectin-like domain. There are approximately 45 such receptor kinases in Arabidopsis thaliana. Surprisingly, although receptor-like kinases in general are well investigated in Arabidopsis, relatively little is known about the functions of members of the Lectin RLK family. A number of studies implicated members of this family in various functions, such as disease resistance, stress responses, hormone signaling, and legume-rhizobium symbiosis. Our current work demonstrated that mutation in one Lectin RLK gene led to male sterility in Arabidopsis. The sterility was due to defects in pollen development. Pollen development proceeded normally in the mutant until anther stage 8. After that, all pollen grains deformed and collapsed. Mature pollen grains were much smaller than wild-type pollen grains, glued together, and totally collapsed. Therefore, the mutant was named sgc, standing for small, glued-together, and collapsed pollen mutant. The mutant phenotype appeared to be caused by an unidentified sporophytic defect due to the mutation. As revealed by analysis of the promoter-GUS transgenic plants and the gene expression analysis using RT-PCR, the gene showed an interesting temporal and spatial expression pattern: it had no or a low expression in young flowers (roughly before anther stage 6), reached a maximum level around stages 6-7, and then declined gradually to a very low level in young siliques. No expression was detected in microspores or pollen. Together, our data demonstrated that SGC Lectin RLK plays a critical role in pollen development.  相似文献   

11.
12.
Sørmo CG  Brembu T  Winge P  Bones AM 《PloS one》2011,6(4):e18530
MIRO GTPases have evolved to regulate mitochondrial trafficking and morphology in eukaryotic organisms. A previous study showed that T-DNA insertion in the Arabidopsis MIRO1 gene is lethal during embryogenesis and affects pollen tube growth and mitochondrial morphology in pollen, whereas T-DNA insertion in MIRO2 does not affect plant development visibly. Phylogenetic analysis of MIRO from plants revealed that MIRO 1 and 2 orthologs in dicots cluster in two separate groups due to a gene/genome duplication event, suggesting that functional redundancy may exists between the two MIRO genes. To investigate this possibility, we generated miro1(+/-)/miro2-2(-/-) plants. Compared to miro1(+/-) plants, the miro1(+/-)/miro2-2(-/-) plants showed increased segregation distortion. miro1(+/-)/miro2-2(-/-) siliques contained less aborted seeds, but more than 3 times the number of undeveloped ovules. In addition, reciprocal crosses showed that co-transmission through the male gametes was nearly absent, whereas co-transmission through the female gametes was severely reduced in miro1(+/-)/miro2-2(-/-) plants. Further investigations revealed that loss of MIRO2 (miro2(-/-)) function in the miro1(+/-) background enhanced pollen tube growth defects. In developing miro1(+/-)/miro2(-/-) embryo sacs, fusion of polar nuclei was further delayed or impaired compared to miro1 plants. This phenotype has not been reported previously for miro1 plants and coincides with studies showing that defects in some mitochondria-targeted genes results in the same phenotype. Our observations show that loss of function in MIRO2 in a miro1(+/-) background enhances the miro1(+/-) phenotype significantly, even though miro2(-/-) plants alone does not display any phenotypes. Based on these findings, we conclude that MIRO1 and MIRO2 are unequally redundant and that a proportion of the miro1(+/-)/miro2(-/-) plants haploid gametes displays the complete null phenotype of MIRO GTPase function at key developmental stages.  相似文献   

13.
Searches in the Arabidopsis thaliana genome using the La motif as query revealed the presence of eight La or La-like proteins. Using structural and phylogenetic criteria, we identified two putative genuine La proteins (At32 and At79) and showed that both are expressed throughout plant development but at different levels and under different regulatory conditions. At32, but not At79, restores Saccharomyces cerevisiae La nuclear functions in non-coding RNAs biogenesis and is able to bind to plant 3′-UUU-OH RNAs. We conclude that these La nuclear functions are conserved in Arabidopsis and supported by At32, which we renamed as AtLa1. Consistently, AtLa1 is predominantly localized to the plant nucleoplasm and was also detected in the nucleolar cavity. The inactivation of AtLa1 in Arabidopsis leads to an embryonic-lethal phenotype with deficient embryos arrested at early globular stage of development. In addition, mutant embryonic cells display a nucleolar hypertrophy suggesting that AtLa1 is required for normal ribosome biogenesis. The identification of two distantly related proteins with all structural characteristics of genuine La proteins suggests that these factors evolved to a certain level of specialization in plants. This unprecedented situation provides a unique opportunity to dissect the very different aspects of this crucial cellular activity.  相似文献   

14.
We identified the Arabidopsis (Arabidopsis thaliana) tanmei/emb2757 (tan) mutation that causes defects in both embryo and seedling development. tan mutant embryos share many characteristics with the leafy cotyledon (lec) class of mutants in that they accumulate anthocyanin, are intolerant of desiccation, form trichomes on cotyledons, and have reduced accumulation of storage proteins and lipids. Thus, TAN functions both in the early and late phases of embryo development. Moreover, the TAN and LEC genes interact synergistically, suggesting that they do not act in series in the same genetic pathway but, rather, that they have overlapping roles during embryogenesis. tan mutants die as embryos, but immature mutant seeds can be germinated in culture. However, tan mutant seedlings are defective in shoot and root development, their hypocotyls fail to elongate in the dark, and they die as seedlings. We isolated the TAN gene and showed that the predicted polypeptide has seven WD repeat motifs, suggesting that TAN forms complexes with other proteins. Together, these results suggest that TAN interacts with other proteins to control many aspects of embryo development.  相似文献   

15.
Vacuolar H(+)-ATPases play an important role in maintaining the pH of endomembrane compartments in eukaryotic cells. The functional relevance of this homeostasis for multicellular development has not been studied in plants. Here, we analyze the biological consequences resulting from the lack of subunit E isoform 1 (VHA-E1) encoded by the Arabidopsis TUFF gene. tuff mutant embryos are lethal, displaying variably enlarged cells with multiple nuclei, large vacuoles containing inclusions, abnormal organization of Golgi stacks, and cell wall defects. Rescue of embryo lethality by cell cycle-regulated expression of VHA-E1 results in abnormal seedlings with non-functional meristems and defective cell differentiation. VHA-E1 is the predominant isoform in embryogenesis whereas VHA-E3 is expressed mainly in the endosperm and surrounding maternal tissues during seed development, and VHA-E2 is pollen-specific. VHA-E1 protein accumulates at endomembrane compartments including vacuoles and endosomes, but appears absent from the plasma membrane. Our results suggest an essential role for VHA-E1 in maintaining a functional secretory system during somatic development but not in the haploid gametophytes.  相似文献   

16.
17.
Very long chain lipids are important components of the plant cuticle that establishes the boundary surface of aerial organs. In addition, these lipids were detected in the extracellular pollen coat (tryphine), where they play a crucial role in appropriate pollen‐stigma communication. As such they are involved in the early interaction of pollen with the stigma. A substantial reduction in tryphine lipids was shown to compromise pollen germination and, consequently, resulted in male sterility. We investigated the role of two long‐chain acyl‐CoA synthetases (LACSs) in Arabidopsis with respect to their contribution to the production of tryphine lipids. LACS was shown to provide CoA‐activated very long chain fatty acids (VLCFA‐CoAs) to the pathways of wax biosynthesis. The allocation of sufficient quantities of VLCFA‐CoA precursors should therefore be relevant to the generation of tryphine lipids. Here, we report on the identification of lacs1 lacs4 double knock‐out mutant lines that were conditionally sterile and showed significant reductions in pollen coat lipids. Whereas the contributions of both LACS proteins to surface wax levels were roughly additive, their co‐operation in tryphine lipid biosynthesis was clearly more complex. The inactivation of LACS4 resulted in increased levels of tryphine lipids accompanied by morphological anomalies of the pollen grains. The additional inactivation of LACS1 neutralized the morphological defects, decreased the tryphine lipids far below wild‐type levels and resulted in conditionally sterile pollen.  相似文献   

18.
The cellulose synthase-like proteins are a large family of proteins in plants thought to be processive polysaccharide beta-glycosyltransferases. We have characterized an Arabidopsis mutant with a transposon insertion in the gene encoding AtCSLA7 of the CSLA subfamily. Analysis of the transmission efficiency of the insertion indicated that AtCSLA7 is important for pollen tube growth. Moreover, the homozygous insertion was embryo lethal. A detailed analysis of seed developmental progression revealed that mutant embryos developed more slowly than wild-type siblings. The mutant embryos also showed abnormal cell patterning and they arrested at a globular stage. The defective embryonic development was associated with reduced proliferation and failed cellularization of the endosperm. AtCSLA7 is widely expressed, and is likely to be required for synthesis of a cell wall polysaccharide found throughout the plant. Our results suggest that this polysaccharide is essential for cell wall structure or for signaling during plant embryo development.  相似文献   

19.
The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER–mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号