首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On-site cellulase and hemicellulase production is a promising way to reduce enzyme cost in the commercialization of the lignocellulose-to-ethanol process. A hemicellulase-producing fungal strain suitable for on-site enzyme production was selected from cultures prepared using wet disc-milling rice straw (WDM-RS) and identified as Trichoderma asperellum KIF125. KIF125 hemicellulase showed uniquely high abundance of β-xylosidase in the xylanolytic enzyme system compared to other fungal hemicellulase preparations. Supplementation of Talaromyces cellulolyticus cellulase with KIF125 hemicellulase was more effective than that with the hemicellulases from other fungal sources in reducing the total enzyme loading for the improvement of xylose yield in the hydrolysis of ball-milling RS, due to its high β-xylosidase dominance. β-Xylosidase in KIF125 hemicellulase was purified and classified as a glycosyl hydrolase family 3 enzyme with relatively high specificity for xylobiose. The production of KIF125 β-xylosidase in the fermentor was estimated as 118 U/g-WDM-RS (2350 U/L culture) at 48 h. These results demonstrate that KIF125 is promising as a practical hemicellulase source to combine with on-site cellulase production using T. cellulolyticus.  相似文献   

2.
Pellet formation and production of mycelia-associated -galactosidase were investigated in 15 Aspergillus and Penicillium strains. Mycelia-associated enzyme activity was measured in sonicated homogenates. The properties of the mycelia-associated -galactosidase of A. phoenicis QM 329 was investigated. The pH optimum of the mycelia-associated enzyme was 4.0. The optimum temperature under assay conditions was 70°C and the optimum temperature for repeated lactose hydrolysis was 60°C. Repeated batch hydrolysis of lactose was made with pellets from five Aspergillus strains. A. phoenicis QM 329 showed the least enzyme leakage from the pellets during hydrolysis. From repeated lactose hydrolysis experiments it was estimated that 50% of the mycelia-associated -galactosidase activity remained after 1300 h. Correspondence to: F. Tjerneld  相似文献   

3.
Eight constructions involving the Bacillus subtilis -amylase gene (amyE), a mouse pancreatic -amylase cDNA (AMY2) and an Aspergillus awamori glucoamylase cDNA (glaA) were prepared: three fusion genes, involving one -amylase and the glucoamylase, two double-cassette plasmids (expressing one or other -amylase and the glucoamylase) and three single-cassette plasmids, expressing the individual coding sequences. Following transformation of each plasmid into Saccharomyces cerevisiae, a plate test revealed that the largest starch hydrolysis halo was produced by the strain bearing the B. subtilis -amylase/glucoamylase fusion (BsAAase/GAase), and the smallest halo by the one expressing the mouse pancreatic -amylase/glucoamylase fusion (MAAase/GAase). When assayed for enzymatic activity in liquid medium, the strains bearing the fusion and the double-cassette plasmids involving B. subtilis -amylase and the glucoamylase exhibited both enzymic activities. Moreover, the BsAAase/GAase hybrid was able to adsorb and digest raw starch. The MAAse/GAase fusion protein was found to exhibit only -amylase activity. Finally, the capacity to grow on soluble and corn starch was tested in liquid medium for the strains bearing plasmids coding for the fusion proteins and the separate enzymes. The strain carrying the double-cassette BsAAase + GAase, which produced one of the smallest hydrolysis haloes in the place test, showed the best performance, not only in digesting soluble and corn starch but also in using all of the hydrolysis products for growth. The transformant bearing the BsAAase/GAase fusion was able to grow on soluble starch, but not on corn starch.  相似文献   

4.
Summary Resolution of a tertiary allylic terpene alcohol (linalool) employed in flavor and fragrance applications was achieved via biocatalytic hydrolysis of its acetate ester using the carboxyl ester hydrolase activity of lyophilized bacterial cells. Several strains of the genera Rhodococcus, Nocardia, Arthrobacter and Mycobacterium were found to be active. In general, the enantioselectivity was low; only with Rhodococcus ruber SM 1792 (S)-linalool was obtained in 58% e.e. (E-value ~5).  相似文献   

5.
Protoplasts of Ustilago maydis were obtained by incubating sporidia of the fungus with a combination of Helicase and a commercial Onozuka R-10 enzyme preparation of Trichoderma harzianum in the presence of 0.6 m (NH4)2 SO4 as an osmotic stabilizer. In the presence of the organic stabilizers sorbitol and sucrose, however, the release of protoplasts was inhibited. Combinations of Helicase with other lytic enzymes such as cellulase from Aspergillus niger, cellulase and hemicellulase from Rhizopus, and Driselase or Nagarse were inactive.  相似文献   

6.
Excretion ofEscherichia coli -hemolysin was tested in rough and smooth strains ofKlebsiella pneumoniae andSalmonella typhimurium. Smooth strains harboring the hemolytic recombinant plasmid pANN202-312 showed a five- to tenfold increase in the hemolytic activity evaluated in the external medium compared with isogenic rough strains harboring the same plasmid.  相似文献   

7.
Summary Production of phenylacetylcarbinol (PAC) was measured in various yeast species. The yeast strains tested were cultivated under submerged conditions in a medium containing corn steep and sucrose as the main components; sucrose, acetaldehyde and benzaldehyde were added to the grown cultures. In a first series of experiments the initial rate of PAC production, i.e. the PAC production determined 30 min after the addition of benzaldehyde was determined in 38 yeast strains, mostly of the generaSaccharomyces andCandida. The amount of PAC produced varied from zero (12 strains) to 1.24 mg ml–1. In a second series of experiments, 15 strains, which in the first series had shown a higher PAC production, were further tested. Sucrose, acetaldehyde and benzaldehyde were added to the cultures until the PAC production ceased. The highest PAC production (6.3 mg ml–1) was reached in the strainSaccharomyces carlsbergensis Budvar; the production was slightly lower in 4 strains of the generaSaccharomyces, Candida andHansenula.  相似文献   

8.
It was found that Pseudoalteromonas citrea strains KMM 3296 and KMM 3298 isolated from the brown algae Fucus evanescens and Chorda filum, respectively, and strain 3297 isolated from the sea cucumber Apostichopus japonicus are able to degrade fucoidans. The fucoidanases of these strains efficiently degraded the fucoidan of brown algae at pH 6.5–7.0 and remained active at 40–50°C. The endo-type hydrolysis of fucoidan resulted in the formation of sulfated -L-fucooligosaccharides. The other nine strains of P. citrea studied (including the type strain of this species), which were isolated from other habitats, were not able to degrade fucoidan.  相似文献   

9.
Production of transgenic alfalfa plants by Agrobacterium-mediated transformation requires Agrobacterium infection and regeneration from tissue culture. Variation in alfalfa (Medicago sativa L.) germplasm for resistance to oncogenic and disarmed strains of A. tumefaciens (Smith & Townsend) Conn was tested in plant populations representing the nine distinct sources of alfalfa germplasm introduced into North America and used to develop modern varieties. For each of the virulent strains there was a positive correlation (p=0.05) of resistance to tumorigenesis with the trait for fall dormancy. There was also a significant correlation between plants selected for ineffective nodulation and resistance to tumorigenesis suggesting that the genetic loci required for successful symbiosis are also involved in tumorigenesis. Tissue explants of seedlings from the nine diversity groups were tested for transformation by three disarmed strains containing a plasmid with the scorable marker -glucuronidase. The strong correlation between dormancy and resistance to oncogenic strains was not observed with disarmed strains. However, there was a strong germplasm-strain interaction or transformation and embryogenesis in a highly embryogenic genotype. Thus, transformation at the whole plant level is germplasm dependent while in tissue culture the bacterial strain used is the critical variable for successful transformation.Abbreviations pTi tumor-inducing plasmid - GUS -glucuronidase  相似文献   

10.
Twenty-four fungus isolates from the compost utilized in commercially growing Agaricus brunnescens were tested for their ability to produce extracellular enzymes involved in the degradation of cellulose, lignin and xylan, the major components of the straw of the compost. All 24 isolates were able to degrade carboxymethyl cellulose. Most were classified as weak or moderate producers of exo--glucanase. Twenty of the 24 were also able to hydrolyze filter paper, a crystalline cellulose. Nineteen of the 24 were able to hydrolyze xylan, a hemicellulose. The production of extracellular polyphenol oxidases was detected utilizing two tests; the blueing of alcoholic gum guaiacol, which indicates tyrosinase production, and the browning of malt extract-gallic acid agar, which indicates laccase production. Twenty produced tyrosinase, but only eight produced laccase. Agaricus brunnescens was also included in all of the tests. It produced exo--glucanase, hemicellulase, tyrosinase and lactase.  相似文献   

11.
Intervessel pits are structures that play a key role in the efficiency and safety functions of xylem hydraulics. However, little is known about the components of the pit membrane (PM) and their role in hydraulic functions, especially in resistance to cavitation. We tested the effect of commercial chemicals including a cellulase, a hemicellulase, a pectolyase, a proteinase and DTT on xylem hydraulic properties: vulnerability to cavitation (VC) and conductance. The effects were tested on branch segments from Fagus sylvatica (where the effects on pit structure were analyzed using TEM) and Populus tremula. Cellulose hydrolysis resulted in a sharp increase in VC and a significant increase in conductance, related to complete breakdown of the PM. Pectin hydrolysis also induced a sharp increase in VC but with no effect on conductance or pit structure observable by TEM. The other treatments with hemicellulase, proteinase or DTT showed no effect. This study brings evidence that cellulose and pectins are critical components underpinning VC, and that PM components may play distinct roles in the xylem hydraulic safety and efficiency.  相似文献   

12.
Summary Each one of at least three unlinked STA loci (STA1, STA2 and STA3), in the genome of Saccharomyces diastaticus controls starch hydrolysis by coding for an extracellular glucoamylase. Cloned STA2 sequences were used as hybridization probes to investigate the physical structure of the family of STA genes in the genomes of different Saccharomyces strains. Sta+ strains, each carrying a single genetically defined STA locus, were crossed with a Sta strain and the segregation behavior of the functional locus (i.e. Sta+) and sequences homologous to a cloned STA2 glucoamylase structural gene at that locus were analyzed. The results indicate that in all strains examined there is a multiplicity of sequences that are homologous to STA2 DNA but that only the functional STA loci contain extensive 5 and 3 homology to each other and can be identified as residing on unique fragments of DNA; that all laboratory yeast strains examined contain extensive regions of the glucoamylase gene sequences at or closely linked to the STA1 chromosomal position; that the STA1 locus contains two distinct glucoamylase gene sequences that are closely linked to each other; and that all laboratory strains examined also contain another ubiquitous sequence that is not allelic to STA1 and is nonfunctional (Sta), but has retained extensive sequence homology to the 5 end of the cloned STA2 gene. It was also determined that the DEX genes (which control dextrin hydrolysis in S. diastaticus), MAL5 (a gene once thought to control maltose metabolism in yeast) and the STA genes are allelic to each other in the following manner: STA1 and DEX2, STA1 and MAL5, and STA2 and DEX1 and STA3 and DEX3.  相似文献   

13.
Porcine pancreatic lipase (PPL)-catalyzed enantioselective hydrolysis of N-benzyloxycarbonyl-dl-amino acid esters (Z-dl-AA-ORs) was studied for the optical resolution of a variety of non-protein amino acids. The ester moiety (R) of the substrate affected the rate of hydrolysis significantly. The glyceryl (Gl) and carbamoylmethyl (Cam) esters were found to be highly reactive substrates. The hydrolysis of the Gl esters (Z-dl-AA-OGls) of both aliphatic and aromatic amino acids was examined in acetonitrile containing 70% (v/v) of 0.02 M phosphate buffer (pH 7.0) at 30°C. With all amino acids tested, the corresponding l-enantiomers were hydrolyzed preferentially. PPL favored aromatic amino acids, such as phenylalanine and p-chlorophenylalanine, leading to completion of the hydrolysis within 20 min with excellent enantioselectivities (E>100). The PPL-catalyzed hydrolysis of the corresponding Cam esters (Z-dl-AA-OCams) was also examined under the same reaction conditions. Although the hydrolysis of the Cam esters was rapid, the l-enantioselectivities were rather poor with aromatic amino acids, such as 2-phenylglycine and homophenylalanine.  相似文献   

14.
The cellulase and hemicellulase genes of the filamentous fungus Trichoderma reesei have been shown to be under carbon catabolite repression mediated by the regulatory gene cre1. In this study, strains were constructed in which the cre1 gene was either completely removed or replaced by a truncated mutant variant, cre1-1, found previously in the Rut-C30 mutant strain with enhanced enzyme production capability. The T. reesei transformants with either deletion or truncation of cre1 had clearly altered colony morphology compared with the parental strains, forming smaller colonies and fewer aerial hyphae and spores. Liquid cultures in a medium with glucose as a carbon source showed that the transformants were derepressed in cellulase and hemicellulase production. Interestingly, they also produced significantly elevated levels of these hydrolytic enzymes in fermentations carried out in a medium inducing the hydrolase genes. This suggests that cre1 acts as a modulator of cellulase and hemicellulase gene expression under both noninducing and inducing conditions. There was no phenotypic difference between the Δcre1 and cre1-1 mutant strains in any of the experiments done, indicating that the cre1-1 gene is practically a null allele. The results of this work indicate that cre1 is a valid target gene in strain engineering for improved enzyme production in T. reesei.The filamentous fungus Trichoderma reesei (Hypocrea jecorina) produces large amounts of extracellular enzymes. The majority of the secreted proteins are various plant polymer-degrading enzymes; the most abundant of these enzymes are the cellobiohydrolases and endoglucanases that act synergistically to break down cellulose. This fungus has been used as a production host for various industrial enzymes, including products tailored for textile, feed, food, and pulp and paper applications (6, 10). It has been reported that protein production levels in the industrial T. reesei process exceed 100 g/liter (7).The major cellulase and hemicellulase genes are regulated in a coordinate manner by the carbon source available (2, 9, 14). Cellulose and other plant materials and other substances (for example, lactose) induce the expression of cellulase and hemicellulase genes, while glucose acts as a repressing carbon source. Several genes coding for regulators of cellulase and hemicellulase expression have been isolated. These include CREI mediating carbon catabolite repression, the repressor ACEI, the activator ACEII, the CCAAT binding complex Hap2/3/5 (reviewed in references 2, 17, and 27) and the activator XYRI (29). The CREI protein has sequence similarity with other fungal proteins mediating glucose repression, such as Aspergillus nidulans CREA (8) and Saccharomyces cerevisiae MIG1 and RGR1 (22). In T. reesei, glucose repression has been shown to occur upon binding of CREI to specific sequences in the cbh1 promoter (13). A mutant cre1 gene (cre1-1) encoding a truncated form of CREI has been isolated from the hypercellulolytic T. reesei strain Rut-C30, which is capable of cellulase and hemicellulase production on glucose-containing media. Further evidence for the function of CREI in glucose repression was obtained by complementation of the cre1-1 mutation of Rut-C30 by the wild-type cre1 gene, which restored the glucose-repressed phenotype of the strain (15).In this paper, we wanted to address three questions. (i) What is the effect of cre1 mutations in the wild-type background? (ii) Is cre1-1 a null mutation? (iii) Can enzyme production be further improved by cre1 deletion in an industrial production strain improved greatly by mutagenesis and screening programs? Therefore, we introduced cre1-1 allele and cre1 deletion to the wild-type strain QM6a and the cre1 deletion into the industrial strain VTT-D-80133 and studied the effects of these mutations on enzyme production.  相似文献   

15.
Forty strains ofRhizobium phaseoli, isolated from Kenyan soils, were tested for infectiveness on common bean (Phaseolus vulgaris L.). 28 strains were infective and a cultivar × Rhizobium interaction was observed. 48 strains were screened for tolerance of acidity and Al in liquid culture. Assessment of visible turbidity after 14 days indicated 34 strains tolerant of pH 4.5 but none tolerant of pH 3.5. No strain was tolerant of 50 M Al at pH 5.5. Three strains were tolerant of 20 M Al at pH 5.5 and 10 M Al at pH 4.5. Screening on a solid medium identified strains tolerant of 20 and 50 M Al at pH 5.5 and 4.5 which were sensitive to these treatments in liquid culture. Those strains tolerant to 20 M Al at pH 4.5 and 5.5 in liquid culture were correctly identified on the solid medium.  相似文献   

16.
Summary We found a specific eye morphology designated as Square, which is induced when some Drosophila melanogaster strains harboring P elements are crossed with the 2–3 strain carrying a modified P element, P[ry +, 2–3], which produces transposase in somatic tissue. This phenotype was dominant and also induced in the reciprocal crosses. Square was induced when the 2–3 strain was crossed with Q and M strains such as the snw (M) strain carrying three small P elements but not with P strains. Inheritance of Square was also tested and its phenotype was not transmitted to the next generation. These results suggest that Square is caused by the transposition of P elements in somatic cells.  相似文献   

17.
The occurrence and expression of -galactosidase among various dextran-producing Leuconostoc strains was determined. -Galactosidase was detected from four of twelve Leuconostoc strains tested. -Galactosidase in L. mesenteroides was induced by lactose and was repressed by glucose. Growth curves of L. mesenteroides on lactose indicated extended lag and late growth phases that were shortened when the inoculum was preexposed to lactose.  相似文献   

18.
Thermophilic, aerobic bacteria isolated from Icelandic hot springs were screened for xylanase activity. Of 97 strains tested, 14 were found to be xylanase positive. Xylanase activities up to 12 nkat/ml were produced by these strains in shake flasks on xylan medium. The xylanases of the two strains producing the highest activities (ITI 36 and ITI 283) were similar with respect to temperature and pH optima (80°C and pH 8.0). Xylanase production of strain ITI 36 was found to be induced by xylan and xylose. Xylanase activity of 24 nkat/ml was obtained with this strain in a laboratory-scale-fermentor cultivation on xylose medium. -Xylosidase activity was also detected in the culture filtrate. The thermal half-life of ITI 36 xylanase was 24 h at 70°C. The highest production of sugars from hydrolysis of beech xylan was obtained at 70°C, although xylan depolymerization was detected even up to 90°C. Correspondence to: M. Rättö  相似文献   

19.
One hundred six strains of aerobic bacteria were isolated from the Fiora River which drains an area of cinnabar deposits in southern Tuscany, Italy. Thirty-seven of the strains grew on an agar medium containing 10g/ml Hg (as HgCl2) with all of these strains producing elemental mercury. Seven of the 37 strains also degraded methylmercury. None of 106 sensitive and resistant strains produced detectable monomethylmercury although 15 strains produced a benzene-soluble mercury species. Two strains of alkylmercury (methyl-, ethyl- and phenylmercury) degrading bacteria were tested for the ability to degrade several other analogous organometals and organic compounds, but no activity was detected toward these compounds. Mercury methylation is not a mechanism of Hg resistance in aerobic bacteria from this environment. Growth of bacteria on the agar medium containing 10g/ml HgCl2 was diagnostic for Hg detoxification based on reduction.  相似文献   

20.
Summary Thirty-six thermophilic archaebacteria and nine extremely thermophilic eubacteria have been screened on solid media for extracellular amylase, protease, hemicellulase (xylanase), cellulase, pectinase and lipase activities. Extracellular enzymes were detected in 14 archaebacteria belonging to three different orders. Twelve of these were able to degrade starch and casein and the two Thermofilum strains were able to degrade starch, xylan and carboxymethylcellulose. Three of the eubacteria could degrade only starch. The other six (including four Thermotoga strains) all had activity against starch, xylan and carboxymethylcellulose, and one also had activity against casein. Some of the amylolytic archaebacteria released -glucosidase, -glucosidase, amylase and transglucosylase activities into liquid media containing starch or maltose. Thermotoga strain FjSS3B.1 released amylase, xylanase, cellulase and -glucosidase activities into the medium when grown in the presence of substrates. When the partially purified enzymes from Thermotoga and some of the archaebacteria were compared with known thermostable enzymes the majority were found to be the most thermostable of their type. The -glucosidase, xylanase and cellulase from Thermotoga and two -glucosidases, a -glucosidase, an amylase and a pullulanase from archaebacteria all have half-lives of at least 15 min at 105°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号