首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Experiments on deactivation kinetics of immobilized lipase enzyme fromCandida cylindracea were performed in stirred batch reactor using rice bran oil as the substrate and temperature as the deactivation parameter. The data were fitted in first order deactivation model. The effect of temperature on deactivation rate was represented by Arrhenius equation. Theoretical equations were developed based on pseudo-steady state approximation and Michaelis-Menten rate expression to predict the time course of conversion due to enzyme deactivation and apparent half-life of the immobilized enzyme activity in PFR and CSTR under constant feed rate policy for no diffusion limitation and diffusion limitation of first order. Stability of enzyme in these continuous reactors was predicted and factors affecting the stability were analyzed.  相似文献   

2.
A general mathematical model is developed in the present work for predicting the steady state performance of immobilized enzyme reactor performing reversible Michaelis - Menten kinetics. The model takes into account the effect of external diffusional limitations, the axial dispersion and the equilibrium constant on reactor performance quantified as relative substrate conversion and yield. The performance of reactor is characterized using the dimensionless parameters of Damkohler number, Stanton number, Peclet number, the equilibrium constant and the dimensionless input substrate concentration. The reactor performance is described for the two extreme cases of plug flow reactor (PFR) and continuous stirred tank reactor (CSTR) in addition to the intermediate case of dispersed plug flow reactor (DPFR). The performance of reactor is compared for the two cases of zero order and reversible first order kinetics.  相似文献   

3.
Hydrolysis of lactose by hyperthermophilic beta-glycosidases from the archaea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB) was carried out at 70 degrees C in a continuous stirred-tank reactor (CSTR) coupled to a 10-kDa cross-flow ultrafiltration module to recycle the enzyme. Recirculation rates of > or =1 min(-1), reaction of proteins with reducing sugars, and enzyme adsorption onto the membrane are major "operational" factors of enzyme inactivation in the CSTR. They cause the half-life times of SsbetaGly and CelB to be reduced two- and eight-fold, respectively, the average value for both enzymes now being approximately 5 to 7 days. Using lactose at initial concentrations of 45 and 170 g/L, the CSTR was operated at a constant conversion level of approximately 80% for more than 2 weeks without the occurrence of microbial contamination. The productivities for the SsbetaGly-catalyzed conversion of lactose were determined at different dilution rates and initial substrate concentrations, and exceed by a factor of < or =2 those observed with CelB under otherwise identical conditions. This difference reflects the approximately eight-fold stronger product inhibition of CelB by D-glucose. While the maximum total galacto-oligosaccharide production (90-100 mM) at 170 g/L lactose in the CSTR was not different from that in the batch reactor (CelB) or was greater by approximately 25% (SsbetaGly), continuous and batchwise reactions with both enzymes differed markedly with regard to relative proportions of the individual saccharide components present at 80% substrate conversion. The CSTR yielded an up to four-fold greater ratio of disaccharides to trisaccharides concomitant with a 5- to 30-fold larger relative proportion of beta-D-Galp-(1-->3)-D-Glc in the product mixture. The results show that apart from continuous hydrolysis of lactose at 70 degrees C, a CSTR charged with SsbetaGly or CelB and operated at steady-state conditions could be a useful reaction system for the production of galacto-oligosaccharides in which composition is narrower and more easily programmable, in terms of the individual components contained, as compared to the batchwise reaction.  相似文献   

4.
A column reactor with an annular cross section was formed by rolling up DEAE cellulose paper and a screening spacer. Glucoamylase was attached by ion adsorption. For the spacer used, pressure drop was very low, suggesting that this form may be useful with feed streams that are not completely particle-free. Tests of this reactor at the high substrate concentrations characteristic of commercial reactors showed very little diffusional resistance, exhibiting zero-order behavior over most of the concentration range. At low concentrations, the reactor had an apparent “half-order” behavior caused by diffusional limitation in the paper. In this range, flow rate influenced the reaction rate, showing that mass transfer in the main stream also is a contributing factor in this range. Because of the high concentrations and the low Michaelis constant (0.0011 M) the reactor does not show first-order behavior, even at very high conversions. The design of a plant-scale reactor was formulated from these data. The increase in the quantity of enzyme necessary to compensate for the effects of diffusion was only a few percent. Two reactors were formed with sheets nonporous to the enzyme, binding the enzyme with cyanogen bromide after forming the reactor. The amount of enzyme bound was about one monolayer, and there appeared to be no diffusional limitations, even at low substrate concentrations.  相似文献   

5.
6.
The study reports on the development of a bioreactor for the production of alpha-keto acids from D,L- or D-amino acids using Rhodotorula gracilis D-amino acid oxidase. D-Amino acid oxidase was co-immobilized with catalase on Affi-Gel 10 matrix, and the reactor was operated as a continuous-stirred tank reactor (CSTR) or stirred tank with medium recycling conditions. The optimum substrate concentration and quantity of biocatalyst were determined (5 mM and 1.2 mg/L, respectively). Under optimum operating conditions, product formation was linearly related to both substrate and enzyme concentration, showing the system to be highly flexible. Under these conditions, in a stirred tank, over 90% conversion was achieved in 30 min with a maximum production of 0.23 g of pyruvic acid/day/enzyme units. Product was recovered by ion exchange chromatography. The operational stability of the reactor was high (up to 9.5 h of operation without loss of activity) and the inactivation half-life was not reached even after 18 h or 36 bioconversion cycles. This represents the first case of a reactor developed successfully with a D-amino acid oxidase. (c) 1994 John Wiley & Sons, Inc.  相似文献   

7.
A systematic study of the enantioselective resolution of ibuprofen by commercial Rhizomucor miehei lipase (Lipozyme(R) IM20) has been carried out using isooctane as solvent and butanol as esterificating agent. The main variables controlling the process (temperature, ibuprofen concentration, ratio butanol:ibuprofen) have been studied using an orthogonal full factorial experimental design, in which the selected objective function was enantioselectivity. This strategy has resulted in a polynomial function that describes the process. By optimizing this function, optimal conditions for carrying out the esterification of racemic ibuprofen have been determined. Under these conditions, enantiomeric excess and total conversion values were 93.8% and 49.9%, respectively, and the enantioselectivity was 113 after 112 h of reaction. These conditions have been considered in the design of a continuous reactor to scale up the process. The esterification of ibuprofen was properly described by pseudo first-order kinetics. Thus, a packed bed reactor operating as a plug-flow reactor (PFR) is the most appropriate in terms of minimizing the residence time compared with a continuous stirred tank reactor (CSTR) to achieve the same final conversion. This reactor shows a similar behavior in terms of enantioselectivity, enantiomeric excess, and conversion when compared with batch reactors. A residence-time distribution (RTD) shows that the flow model is essentially a plug flow with a slight nonsymmetrical axial dispersion (Peclet number = 43), which was also corroborated by the model of CSTR in series. The stability of the system (up to 100 h) and the possibility of reutilization of the enzyme (up to four times) lead to consider this reactor as a suitable configuration for scale up of the process.  相似文献   

8.
The racemic resolution of l-valine and l-serine by fungal aminoacylase has been evaluated by comparing the performance of various reactor configurations including an anion exchange nylon tangential flow membrane reactor, a tubular reactor with aminoacylase adsorbed onto DEAE-Sephadex as support and a continuous stirred tank reactor with enzyme recycling using a flat ultrafiltration module (CSTR/UF). Among the substrates tested, the N-chloroacetyl-d,l-amino acids were the preferred substrates, showing the highest catalytic efficiency (Vm/Km).Optimum reactor operational conditions obtained in discontinuous assays were selected to study the behaviour of the reactors in a continuous mode. DEAE-Sephadex loaded six-fold more enzyme than anion exchange nylon (60 and 10 gE/litre, respectively, related to reactor volume), whereas enzyme concentration within the CSTR/UF reactor was limited only by enzyme solubility.The tangential flow membrane reactor configuration with a 10 g/litre enzyme concentration produced higher productivity values (0·35 kg l-valine/litre per day, and 80% conversion degree) and operational stability (t = 161 days) than the CSTR/UF reactor (0·24 kg l-valine/litre per day, and 80% conversion degree) performing with the same enzyme concentration. The tubular reactor with the enzyme adsorbed onto DEAE-Sephadex (60 g/litre enzyme load) showed higher productivity values (1·9 kg l-valine/litre per day, and 80% conversion degree) and operational stability (t = 70 days) than the CSTR/UF reactor (1·05 kg l-valine/litre per day, and 80% conversion degree). However, the CSTR/UF reactor was the preferred configuration, as it had the highest enzyme load and productivity (1·95 kg l-valine/litre per day of reactor volume, and 80% conversion degree), a half-life of 55 days at 50°C, and the possibility of easy continuous enzyme addition.  相似文献   

9.
The production of galacto-oligosaccharides (GOS) from lactose by A. oryzae beta-galactosidase immobilized on cotton cloth was studied. The total amounts and types of GOS produced were mainly affected by the initial lactose concentration in the reaction media. In general, more and larger GOS can be produced with higher initial lactose concentrations. A maximum GOS production of 27% (w/w) of initial lactose was achieved at 50% lactose conversion with 500 g/L of initial lactose concentration. Tri-saccharides were the major types of GOS formed, accounting for more than 70% of the total GOS produced in the reactions. Temperature and pH affected the reaction rate, but did not result in any changes in GOS formation. The presence of galactose and glucose at the concentrations encountered near maximum GOS greatly inhibited the reactions and reduced GOS yield by as much as 15%. The cotton cloth as the support matrix for enzyme immobilization did not affect the GOS formation characteristics of the enzyme, suggesting no diffusion limitation in the enzyme carrier. The thermal stability of the enzyme increased approximately 25-fold upon immobilization on cotton cloth. The half-life for the immobilized enzyme on cotton cloth was more than 1 year at 40 degrees C and 48 days at 50 degrees C. Stable, continuous operation in a plugflow reactor was demonstrated for 2 weeks without any apparent problem. A maximum GOS production of 21 and 26% (w/w) of total sugars was attained with a feed solution containing 200 and 400 g/L of lactose, respectively, at pH 4.5 and 40 degrees C. The corresponding reactor productivities were 80 and 106 g/L/h, respectively, which are at least several-fold higher than those previously reported.  相似文献   

10.
Amyloglucosidase was covalently bound to collagen sheets by a previously described method. The time of acidic methylation (first step of the collagen activation process) was important to obtain a good enzymatic surfacic activity. Homogeneity of the coupling procedure on the surface of collagen films was shown. Some properties of free enzyme were not affected after grafting; optimum pH and temperature, activation energy, and Km for maltose. Heat stability of the bound enzyme was slightly better; Km for soluble starch increased fivefold. In contrast, the maximal velocity in the presence of soluble starch remained four times that of maltose hydrolysis. Amyloglucosidase collagen membranes were used in a helicoidal reactor to produce glucose from maltose or soluble starch solutions. Tracer studies have shown that the helicoidal reactor behaved as a CSTR. The influence of maltose concentration and flow rate on conversion was studied and confirmed the absence of diffusional limitations for maltose. Recycling of concentrated solutions of maltose and soluble starch indicated strong diffusional restrictions for soluble starch. The catalytic support kept all its activity for 18 days continuous operation at 40 degrees C and 80% after 17 months storage at 4 degrees C.  相似文献   

11.
Competition for nutrient and the ability of bacteria to colonize the gut wall are factors believed to play a role in the observed stability of the indigenous microbiota of the mammalian large intestine. These factors were incorporated into the two-strain continuous-stirred tank reactor (CSTR) model formulated and numerically investigated by Freter et al. In their model simulations, the reactor is parameterized using data for the mouse intestine. An invading bacterial strain is introduced into a CSTR that has already been colonized by a resident strain. The two strains compete for a single growth-limiting nutrient and for limited adhesion sites on the wall of the reactor. The mathematical model described in this paper is motivated in part by the CSTR model, but is based on the plug flow reactor (PFR). Parameter values and initial conditions are chosen so that the numerical performance of the PFR can be compared to that of the CSTR. In simulations bearing a remarkable qualitative and quantitative resemblance to those of the CSTR it is found that the invader is virtually eliminated, despite the fact that it has uptake rate and affinity for the wall identical to those of the resident. The PFR model is then parametrized using data for the human large intestine, and the two-strain simulations are repeated. Though obvious quantitative differences are noted, the more important qualitative outcome is preserved. It is also found that when three strains compete for a single nutrient and for adhesion sites there exists a steady-state solution characterized by the segregation of the bacterial strains into separate nonoverlapping segments along the wall of the reactor.  相似文献   

12.
The L-tert-leucine synthesis was performed continuously in series of two enzyme-membrane reactors by reductive amination of trimethylpyruvate with leucine dehydrogenase. The necessary “native” cofactor NADH is regenerated with the aid of a second enzyme, formate dehydrogenase. Considering detailed kinetic studies of initial reaction rates under conditions relevant to the process a kinetic model was developed. The model shows that the overall reaction rate is strongly inhibited by the reaction product. The reactor's models combine the mass balances and proposed kinetic equations. The model adequacy was verified by using it to simulate the experiments and by comparing experimental and computed conversion, space-time yield and enzyme consumption. The calculations for the three reactor's types (batch, single CSTR and a cascade of two CSTRs in series) were compared. The results showed that a single CSTR is no favourable reactor configuration due to the very strong product inhibition. Space-time yield drops from 560 g litre?1 day?1 in a batch reactor to 110 g litre?1 day?1 in a single CSTR at the highest conversion of 98%. At the conversion of 95% the difference in biocatalyst costs between batch and two CSTR in series is negligible. Therefore the use of two enzyme membrane reactors in series was proposed. The modelling in this work shows that the optimisation of the quantity of the enzyme used results in a minimisation of the biocatalyst costs.  相似文献   

13.
胡永红  杨文革 《工业微生物》1997,27(1):17-20,29
研究了产氨短杆菌MA-2,黄色短杆菌MA-3的固定化细胞在富马酸铵转化体系中生成L-苹果酸的动力学参数,同时比较了固定化细胞在填充床及连续机械搅拌反应器中酶转化反应的差异。研究结果表明:当转化率小于40%时,酶反应在两种反应器所需的停留时间相当。随着转化率的提高,填充床反应器较连续机械搅拌反应器所需的停留时间短且不会因剪切力使固定化颗粒受到损伤,因此,在富马酸铵体系中用固定化酶生产L-苹果酸采用填  相似文献   

14.
A perforated rotating disc bioreactor was developed to perform the esterification of ethanol with oleic acid, catalyzed by a lipase from Rhizomucor miehei immobilized by adsorption on to a hydrophobic support-Accurel EP700. The bioreactor with total recirculation operated at an optimum agitation rate of 400 rev./min. The experimental results, in this condition, were predict by a kinetic model using the constants obtained in the batch (Erlenmeyer flasks) assays: a catalytic constant, k(cat) = 5.78 mmol/h. mg protein; a Michaelis constant for ethanol, K(m(Et)) = 1.20 M; a Michaelis constant for oleic acid, K(m(Ol)) = 1.16 x 10(-8) M, and a dissociation constant of the ethanol-lipase complex, K((Et)) = 9.46 x 10(7) M. The efficiency of conversion gradually decreased during continuous operation of the reactor. The enzymatic activity decayed according to a first order deactivation model and the integrated equations of a continuous stirred tank reactor (CSTR) and a plug flow reactor (PFR). A half-life time of the lipase of about 10 days and a deactivation constant of 0.003 h(-1) were obtained in the present system.  相似文献   

15.
Penicillin acylase has been immobilized to carboxymethylcellulose and to the resin Amberlite XAD7. The reaction kinetics of the enzyme were affected by both intrinsic (molecular) and microenvironmental effects. The Michaelis constant for the enzyme increased after immobilization as a result of an intrinsic effect of the reagent, glutaraldehyde, used for enzyme immobilization. Microenvironmental effects were of two types: diffusional limitation of access of substrate and a reaction-generated pH depression in the support particles. This depression of internal pH was observed in all the preparations and could be reduced by addition of pH buffering salts to reactor. An adsorbed pH-indicating dyc was used to determine the surface and internal pH of particles of XAD7–penicillin acylase under various reaction conditions. The extent of diffusional rate limitation in XAD7–penicillin acylase was related to the penetration depth of protein into the porous support particles. The penetration depth of protein and thus the diffusional limitation of the reaction rate could be controlled by the conditions of preparation of the immobilized enzyme. A staining technique was used to observe the location of the protein.  相似文献   

16.
Partially purified β-d-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) from Bacillus circulans showed high activity towards both pure lactose and lactose in skim milk, and a better thermal stability than the enzyme from yeast or Escherichia coli. During the course of hydrolysis of lactose catalysed by the enzyme, considerable amounts of oligosaccharides were produced. β-d-Galactosidase from B. circulans was immobilized onto Duolite ES-762, Dowex MWA-1 and sintered alumina by adsorption with glutaraldehyde treatment. The highest activity for hydrolysis of lactose was obtained with immobilization onto Duolite ES-762. During a continuous hydrolysis of lactose, the immobilized enzyme was reversibly inactivated, probably due to oligosaccharides accumulating in the gel. The inactivation was reduced when a continuous reaction was operated at a high percent conversion of lactose in a continuous stirred tank reactor (CSTR). The half-life of the immobilized enzyme was estimated to be 50 and 15 days at 50 and 55°C, respectively, when the reaction was carried out in a CSTR with a percent conversion of lactose >70%.  相似文献   

17.
N-glycosylation plays a key role in the quality of many therapeutic glycoprotein biologics. The biosynthesis reactions of these oligosaccharides are a type of network in which a relatively small number of enzymes give rise to a large number of N-glycans as the reaction intermediates and terminal products. Multiple glycans appear on the glycoprotein molecules and give rise to a heterogeneous product. Controlling the glycan distribution is critical to the quality control of the product. Understanding N-glycan biosynthesis and the etiology of microheterogeneity would provide physiological insights, and facilitate cellular engineering to enhance glycoprotein quality. We developed a mathematical model of glycan biosynthesis in the Golgi and analyzed the various reaction variables on the resulting glycan distribution. The Golgi model was modeled as four compartments in series. The mechanism of protein transport across the Golgi is still controversial. From the viewpoint of their holding time distribution characteristics, the two main hypothesized mechanisms, vesicular transport and Golgi maturation models, resemble four continuous mixing-tanks (4CSTR) and four plug-flow reactors (4PFR) in series, respectively. The two hypotheses were modeled accordingly and compared. The intrinsic reaction kinetics were first evaluated using a batch (or single PFR) reactor. A sufficient holding time is needed to produce terminally-processed glycans. Altering enzyme concentrations has a complex effect on the final glycan distribution, as the changes often affect many reaction steps in the network. Comparison of the glycan profiles predicted by the 4CSTR and 4PFR models points to the 4PFR system as more likely to be the true mechanism. To assess whether glycan heterogeneity can be eliminated in the biosynthesis of biotherapeutics the 4PFR model was further used to assess whether a homogeneous glycan profile can be created through metabolic engineering. We demonstrate by the spatial localization of enzymes to specific compartments all terminally processed N-glycans can be synthesized as homogeneous products with a sufficient holding time in the Golgi compartments. The model developed may serve as a guide to future engineering of glycoproteins.  相似文献   

18.
The effect of four operating variables (enzyme concentration, substrate concentration, flow rate, and reaction volume) on the performance of CSTR-hollow fiber membrane reactor was studied for the continuous hydrolysis of a soy protein isolate using Pronase. Based on a residence time distribution study, the reactor system was modeled as an ideal CSTR in combination with the Michaelis-Menten equation of enzyme kinetics. This kinetic model correlated conversion with a space-time parameter modified to include all four independent variables. An empirical model based on curvilinear regression analysis was also developed. Both models predicted conversion fairly well, although the kinetic model slightly underpredicts at high conversion.  相似文献   

19.
Urease, (urea amidohydrolase, EC 3.5.1.5) co-encapsulated with haemoglobin in cellulose nitrate membranes was found to exhibit apparent Michaelis-Menten kinetics; however, a steadily increasing apparent Michaelis-Menten constant over the lifetime of the preparation was observed. The activity of the enzyme in a continuous feed stirred tank reactor (CSTR) was investigated and correlated with a mathematical model derived from basic Michaelis-Menten kinetics. Plots relating substrate conversion to feed substrate concentration and tank reactor capacity were constructed and found to be accurate to less than 15% error under the experimental conditions studied.  相似文献   

20.
By investigating the effects of four operating variables-volume (V), Ultrafiltration flux (J), enzyme concentration (E), and substrate concentration (S)-on capacity (K) and conversion rate (epsilon) of a hollow fiber CSTR, the performances of the CSTR and the kinetic constants of the reaction were determined. A model which takes into account the course of fractional conversion (X) according to the modified space-time parameter, tau (integrated form of V, J, S, and E), was devised by employing the relationship to integrate the equation for the reaction rate of the CSTR and the expression of the modified space time. Correlation of this model and the experimentally obtained results demonstrates that the characteristics for an ultrafiltration membrane reactor for enzymatic hydrolysis by alcalase of plasma proteins are close to those of an ideal CSTR. Optimal scaling up, however, remains dependent on the compromise which may be obtained between capacity and the conversion rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号