首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scatter factor/hepatocyte growth factor (SF/HGF) stimulates the motility of epithelial cells, initially inducing centrifugal spreading of cell colonies followed by disruption of cell-cell junctions and subsequent cell scattering. These responses are accompanied by changes in the actin cytoskeleton, including increased membrane ruffling and lamellipodium extension, disappearance of peripheral actin bundles at the edges of colonies, and an overall decrease in stress fibers. The roles of the small GTP-binding proteins Ras, Rac, and Rho in regulating responses to SF/HGF were investigated by microinjection. Inhibition of endogenous Ras proteins prevented SF/HGF-induced actin reorganization, spreading, and scattering, whereas microinjection of activated H-Ras protein stimulated spreading and actin reorganization but not scattering. When a dominant inhibitor of Rac was injected, SF/HGF- and Ras-induced spreading and actin reorganization were prevented, although activated Rac alone did not stimulate either response. Microinjection of activated Rho inhibited spreading and scattering, while inhibition of Rho function led to the disappearance of stress fibers and peripheral bundles but did not prevent SF/HGF-induced motility. We conclude that Ras and Rac act downstream of the SF/HGF receptor p190Met to mediate cell spreading but that an additional signal is required to induce scattering.  相似文献   

2.
Expression of certain subtypes of human muscarinic receptors in NIH 3T3 cells provides an agonist-dependent model of cellular transformation by formation of foci in response to carbachol. Although focus formation correlates with the ability of the muscarinic receptors to activate phospholipase C, the actual mitogenic signal transduction pathway is unknown. Through cotransfection experiments and measurement of the activation state of native and epitope-tagged Ras proteins, the contributions of Ras and Ras GTPase-activating protein (Ras-GAP) to muscarinic receptor-dependent transformation were defined. Transforming muscarinic receptors were able to activate Ras, and such activation was required for transformation because focus formation was inhibited by coexpression of either Ras with a dominant-negative mutation or constructs of Ras-GAP that include the catalytic domain. Coexpression of the N-terminal region of GAP or of its isolated SH3 (Src homology 3) domain, but not its SH2 domain, was also sufficient to suppress muscarinic receptor-dependent focus formation. Point mutations at conserved residues in the Ras-GAP SH3 domain reversed its action, leading to an increase in carbachol-dependent transformation. The inhibitory effect of expression of the Ras-GAP SH3 domain occurs proximal to Ras activation and is selective for the mitogenic pathway activated by carbachol, as cellular transformation by either v-Ras or trkA/nerve growth factor is unaffected.  相似文献   

3.
The Src homology (SH) region 2 binds to phosphorylated tyrosine residues and SH3 domains may interact with cytoskeletal molecules and GTPase-activating proteins for Rho/Rac proteins (the small GTP-binding proteins related to Ras). The recently cloned Ash/Grb-2 protein, a 25-28 kDa molecule composed entirely of SH2 and SH3 domains, is a mammalian homolog of the Caenorhabditis elegans Sem-5 protein, which communicates between a receptor protein tyrosine kinase and a Ras protein. In the present study the function of Ash/Grb-2 was investigated by microinjecting cells with an anti-Ash antibody. The antibody abolished both S phase entry and the reorganization of actin assembly to ruffle formation upon stimulation with epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). On the other hand, anti-Ash antibody had no effect on S phase entry or actin stress fiber formation induced by either serum or lysophosphatidic acid. Since the induction of DNA synthesis, ruffle induction and stress fiber formation involve a function of Ras, Rac activation and Rho activation respectively, the findings strongly suggest that Ash plays a critical role in the signaling of both pathways downstream from growth factor receptors to Ras and Rac. Consistent with this, Ash co-precipitated with EGF receptor from EGF-stimulated cells. Other proteins of approximately 21, 29, 135 and 160 kDa were also detected in the anti-Ash antibody immunoprecipitates, suggesting a role of Ash as a linker molecule in signal transduction downstream of growth factor receptors.  相似文献   

4.
Ligand-induced PDGF-type beta receptor (PDGFbeta-R) autophosphorylation is profoundly suppressed in cells transformed by activated p21(Ras). We report here that the integrity of the actin cytoskeleton is a critical regulator of PDGFbeta-R function in the presence of p21(Ras). Morphological reversion of Balb cells expressing a constitutively activated p21(Ras), with re-formation of actin stress fibers and cytoskeletal architecture, rendering them phenotypically similar to untransformed fibroblasts, allowed recovery of ligand-dependent PDGFbeta-R autophosphorylation. Conversely, disruption of the actin cytoskeleton in Balb/c-3T3 cells obliterated the normal ligand-induced phosphorylation of the PDGFbeta-R. The Rho family GTPases Rac and Rho are activated by p21(Ras) and are critical mediators of cell motility and morphology via their influence on the actin cytoskeleton. Transient expression of wild-type or constitutively active mutant forms of RhoA suppressed ligand-dependent PDGFbeta-R autophosphorylation and downstream signal transduction. These studies demonstrate the necessary role of Rho in the inhibition of PDGFbeta-R autophosphorylation in cells containing activated p21(Ras) and also demonstrate the importance of cell context and the integrity of the actin cytoskeleton in the regulation of PDGFbeta-R ligand-induced autophosphorylation.  相似文献   

5.
RhoE Regulates Actin Cytoskeleton Organization and Cell Migration   总被引:20,自引:4,他引:16       下载免费PDF全文
The actin cytoskeleton is regulated by Rho family proteins: in fibroblasts, Rho mediates the formation of actin stress fibers, whereas Rac regulates lamellipodium formation and Cdc42 controls filopodium formation. We have cloned the mouse RhoE gene, whose product is a member of the Rho family that shares (except in one amino acid) the conserved effector domain of RhoA, RhoB, and RhoC. RhoE is able to bind GTP but does not detectably bind GDP and has low intrinsic GTPase activity compared with Rac. The role of RhoE in regulating actin organization was investigated by microinjection in Bac1.2F5 macrophages and MDCK cells. In macrophages, RhoE induced actin reorganization, leading to the formation of extensions resembling filopodia and pseudopodia. In MDCK cells, RhoE induced the complete disappearance of stress fibers, together with cell spreading. However, RhoE did not detectably affect the actin bundles that run parallel to the outer membranes of cells at the periphery of colonies, which are known to be dependent on RhoA. In addition, RhoE induced an increase in the speed of migration of hepatocyte growth factor/scatter factor-stimulated MDCK cells, in contrast to the previously reported inhibition produced by activated RhoA. The subcellular localization of RhoE at the lateral membranes of MDCK cells suggests a role in cell-cell adhesion, as has been shown for RhoA. These results suggest that RhoE may act to inhibit signalling downstream of RhoA, altering some RhoA-regulated responses, such as stress fiber formation, but not affecting others, such as peripheral actin bundle formation.  相似文献   

6.
Ras GTPase activating protein (GAP) possesses a C-terminal domain that interacts with GTP-bound Ras, and an N-terminal region containing two SH2 domains and an SH3 domain. In addition to its association with Ras, GAP binds stably to autophosphorylated beta PDGF receptors, and to two cytoplasmic phosphoproteins: p62, an RNA binding protein, and p190, which possesses GAP activity towards small guanine nucleotide binding proteins in the Rho/Rac family. To define the region of GAP that mediates these interactions with cellular phosphoproteins, and to investigate the biological significance of these complexes, a truncated GAP polypeptide (GAP-N) containing residues 1-445 was stably expressed in Rat-2 fibroblasts. GAP-N contains the SH2 and SH3 domains, but lacks the Ras GTPase activating domain. Stimulation of cells expressing GAP-N with PDGF induced association of GAP-N with the beta PDGF receptor, and phosphorylation of GAP-N on tyrosine, consistent with the notion that GAP SH2 domains direct binding to the autophosphorylated beta PDGF receptor in vivo. GAP-N bound constitutively to p190 in both serum-deprived and growth factor-stimulated cells. This GAP-N-p190 complex had Rho GAP activity in vitro. The expression of GAP-N in Rat-2 cells correlated with changes in the cytoskeleton and in cell adhesion, typified by the disruption of action stress fibres, a reduction in focal contacts, and an impaired ability to adhere to fibronectin. These results suggest that the N-terminal domain of GAP can direct interactions with cellular phosphoproteins in vivo, and thereby exert an effector function which modulates the cytoskeleton and cell adhesion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
W J Kranewitter  M Gimona 《FEBS letters》1999,455(1-2):123-129
The Dbl family proto-oncogene vav is a guanine nucleotide exchange factor (GEF) for Rho family GTPases. Deletion of the N-terminus of Vav, harboring the single calponin homology (CH) domain, activates Vav's transforming potential, suggesting an important role of the CH domain in influencing Vav function. Since calponin binds actin, it has been suggested that the CH domain may mediate association with the actin cytoskeleton. In this study we have analyzed the subcellular localization and investigated the putative actin association of the Vav protein using enhanced green fluorescent protein (EGFP) fusion constructs. Our data show that both EGFP-tagged full length Vav and the CH domain-depleted EGFPvav 143-845 construct localize throughout the cytoplasm but fail to colocalize with F-actin. However, the latter construct of Vav was more strongly retained in the Triton-insoluble cytoskeleton fraction than full length Vav. Whereas removal of the CH domain had no apparent influence on the subcellular localization of Vav, deletion of the SH domains caused nuclear localization, indicating that Vav contains a functional nuclear localization signal. Expression of N-terminally truncated Vav constructs caused depolarization of fibroblasts and triggered the bundling of actin stress fibers into parallel arrays in NIH 3T3 cells. Notably, the parallel actin bundles showed prolonged resistance to the actin polymerization antagonists cytochalasin B and latrunculin B. These data point towards a regulatory role for the CH domain in Vav and suggest an actin cross-linking or bundling protein as a downstream effector molecule of vav-mediated signalling pathways.  相似文献   

8.
The SH3-SH3-SH3-SH2 adapter Nck represents a two-gene family that includes Nckalpha (Nck) and Nckbeta (Grb4/Nck2), and it links receptor tyrosine kinases to intracellular signaling networks. The function of these mammalian Nck genes has not been established. We report here a specific role for Nckbeta in platelet-derived growth factor (PDGF)-induced actin polymerization in NIH 3T3 cells. Overexpression of Nckbeta but not Nckalpha blocks PDGF-stimulated membrane ruffling and formation of lamellipoda. Mutation in either the SH2 or the middle SH3 domain of Nckbeta abolishes its interfering effect. Nckbeta binds at Tyr-1009 in human PDGF receptor beta (PDGFR-beta) which is different from Nckalpha's binding site, Tyr-751, and does not compete with phosphatidylinositol-3 kinase for binding to PDGFR. Microinjection of an anti-Nckbeta but not an anti-Nckalpha antibody inhibits PDGF-stimulated actin polymerization. Constitutively membrane-bound Nckbeta but not Nckalpha blocks Rac1-L62-induced membrane ruffling and formation of lamellipodia, suggesting that Nckbeta acts in parallel to or downstream of Rac1. This is the first report of Nckbeta's role in receptor tyrosine kinase signaling to the actin cytoskeleton.  相似文献   

9.
Role of p120 Ras-GAP in directed cell movement   总被引:1,自引:0,他引:1  
We have used cell lines deficient in p120 Ras GTPase activating protein (Ras-GAP) to investigate the roles of Ras-GAP and the associated p190 Rho-GAP (p190) in cell polarity and cell migration. Cell wounding assays showed that Ras-GAP-deficient cells were incapable of establishing complete cell polarity and migration into the wound. Stimulation of mutant cells with growth factor rescued defects in cell spreading, Golgi apparatus fragmentation, and polarized vesicular transport and partially rescued migration in a Ras-dependent manner. However, for directional movement, the turnover of stress fibers and focal adhesions to produce an elongate morphology was dependent on the constitutive association between Ras-GAP and p190, independent of Ras regulation. Disruption of the phosphotyrosine-mediated Ras-GAP/p190 complex by microinjecting synthetic peptides derived from p190 sequences in wild-type cells caused a suppression of actin filament reorientation and migration. From these observations we suggest that although Ras-GAP is not directly required for motility per se, it is important for cell polarization by regulating actin stress fiber and focal adhesion reorientation when complexed with 190. This observation suggests a specific function for Ras-GAP separate from Ras regulation in cell motility.  相似文献   

10.
Transformation by oncogenic Ras requires the function of the Rho family GTPases. We find that Ras-transformed cells have elevated levels of RhoA-GTP, which functions to inhibit the expression of the cell cycle inhibitor p21/Waf1. These high levels of Rho-GTP are not a direct consequence of Ras signalling but are selected for in response to sustained ERK-MAP kinase signalling. While the elevated levels of Rho-GTP control the level of p21/Waf, they no longer regulate the formation of actin stress fibres in transformed cells. We show that the sustained ERK-MAP kinase signalling resulting from transformation by oncogenic Ras down-regulates ROCK1 and Rho-kinase, two Rho effectors required for actin stress fibre formation. The repression of Rho- dependent stress fibre formation by ERK-MAP kinase signalling contributes to the increased motility of Ras-transformed fibroblasts. Overexpression of the ROCK target LIM kinase restores actin stress fibres and inhibits the motility of Ras-transformed fibroblasts. We propose a model in which Ras and Rho signalling pathways cross-talk to promote signalling pathways favouring transformation.  相似文献   

11.
The SH3 binding protein, 3BP-1, was originally cloned as a partial cDNA from an expression library using the Abl SH3 domain as a probe. In addition to an SH3 binding domain, 3BP-1 displayed homology to a class of GTPase activating proteins (GAPs) active against Rac and Rho proteins. We report here a full length cDNA of 3BP-1 which extends the homology to GAP proteins previously noted. 3BP-1 functions in vitro as a GAP with a specificity for Rac-related G proteins. Microinjection of the 3BP-1 protein into serum-starved fibroblasts produces an inhibition of platelet-derived growth factor (PDGF)-induced membrane ruffling mediated by Rac. Co-injection of 3BP-1 with an activated Rac mutant that is unresponsive to GAPs, counter-acts this inhibition. 3BP-1 does not show in vitro activity towards Rho and, in agreement with this finding, microinjection of 3BP-1 into fibroblasts has no effect on lysophosphatidic acid (LPA)-induced stress fiber assembly mediated by Rho. Thus 3BP-1 is a new and specific Rac GAP that can act in cells to counter Rac-mediated membrane ruffling. How its SH3 binding site interacts with its GAP activity remains to be understood.  相似文献   

12.
In the yeast, Saccharomyces cerevisiae, adenylyl cyclase consists of a 200-kDa catalytic subunit (CYR1) and a 70-kDa subunit (CAP/SRV2). CAP/Srv2p assists the small G protein Ras to activate adenylyl cyclase. CAP also regulates the cytoskeleton through an actin sequestering activity and is directed to cortical actin patches by a proline-rich SH3-binding site (P2). In this report we analyze the role of the actin cytoskeleton in Ras/cAMP signaling. Two alleles of CAP, L16P(Srv2) and R19T (SupC), first isolated in genetic screens for mutants that attenuate cAMP levels, reduced adenylyl cyclase binding, and cortical actin patch localization. A third mutation, L27F, also failed to localize but showed no loss of either cAMP signaling or adenylyl cyclase binding. However, all three N-terminal mutations reduced CAP-CAP multimer formation and SH3 domain binding, although the SH3-binding site is about 350 amino acids away. Finally, disruption of the actin cytoskeleton with latrunculin-A did not affect the cAMP phenotypes of the hyperactive Ras2(Val19) allele. These data identify a novel region of CAP that controls access to the SH3-binding site and demonstrate that cytoskeletal localization of CAP or an intact cytoskeleton per se is not necessary for cAMP signaling.  相似文献   

13.
Madin-Darby canine kidney (MDCK) epithelial cells transformed by oncogenic Ras and Raf exhibit cell multilayering and alterations in the actin cytoskeleton. The changes in the actin cytoskeleton comprise a loss of actin stress fibers and enhanced cortical actin. Using MDCK cells expressing a conditionally active form of Raf, we have explored the molecular mechanisms that underlie these observations. Raf activation elicited a robust increase in Rac1 activity consistent with the observed increase in cortical actin. Loss of actin stress fibers is indicative of attenuated Rho function, but no change in Rho-GTP levels was detected following Raf activation. However, the loss of actin stress fibers in Raf-transformed cells was preceded by the induced expression of Rnd3, an endogenous inhibitor of Rho protein function. Expression of Rnd3 alone at levels equivalent to those observed following Raf transformation led to a substantial loss of actin stress fibers. Moreover, cells expressing activated RhoA failed to multilayer in response to Raf. Pharmacological inhibition of MEK activation prevented all of the biological and biochemical changes described above. Consequently, the data are consistent with a role for induced Rnd3 expression downstream of the Raf-MEK-extracellular signal-regulated kinase pathway in epithelial oncogenesis.  相似文献   

14.
SH2/SH3 domain-containing adapter proteins, such as the Nck family, play a major role in regulating tyrosine kinase signalling. They serve to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. Initially, it was not clear why cells from nematodes to vertebrates contain redundant and closely related SH2/SH3 adapters, such as Grb2, Crk and Nck. Recent evidence suggests that their biological roles are clearly different, whereas, for example, Grb2 connects activated receptor tyrosine kinases to Sos and Ras, leading to cell proliferation. The proteins of Nck family are implicated in organisation of actin cytoskeleton, cell movement or axon guidance in flies. In this review, the author attempts to summarise signalling pathways in which Nck plays a critical role.  相似文献   

15.
Pulmonary endothelial permeability is an important determinant of vascular adaptation to changes in oxygen tension, blood pressure, levels of growth factors or inflammatory cytokines. The Ras homologous (Rho) family of guanosine triphosphate phosphatases (Rho GTPases), key regulators of the actin cytoskeleton, regulate endothelial barrier function in response to a variety of environmental factors and signalling agents via the reorganization of the actin cytoskeleton, changes in receptor trafficking or the phosphorylation of junctional proteins. This review provides a brief summary of recent knowledge on Rho-GTPase-mediated effects on pulmonary endothelial barrier function and focuses in particular on their role in pulmonary vascular disorders, including pulmonary hypertension, chronic obstructive pulmonary disease, acute lung injury and acute respiratory distress syndrome.  相似文献   

16.
Zuo X  Zhang J  Zhang Y  Hsu SC  Zhou D  Guo W 《Nature cell biology》2006,8(12):1383-1388
The exocyst is a multiprotein complex essential for tethering secretory vesicles to specific domains of the plasma membrane for exocytosis. Here, we report that the exocyst component Exo70 interacts with the Arp2/3 complex, a key regulator of actin polymerization. We further show that the exocyst-Arp2/3 interaction is regulated by epidermal growth factor (EGF) signalling. Inhibition of Exo70 by RNA interference (RNAi) or antibody microinjection blocks the formation of actin-based membrane protrusions and affects various aspects of cell motility. We propose that Exo70, in addition to functioning in exocytosis, also regulates actin at the leading edges of migrating cells, therefore coordinating cytoskeleton and membrane traffic during cell migration.  相似文献   

17.
Src homology domains [i.e., Src homology domain 2 (SH2) and Src homology domain 3 (SH3)] play a critical role in linking receptor tyrosine kinases to downstream signaling networks. A well-defined function of the SH3-SH2-SH3 adapter Grb2 is to link receptor tyrosine kinases, such as the epidermal growth factor receptor (EGFR), to the p21ras-signaling pathway. Grb2 has also been implicated to play a role in growth factor-regulated actin assembly and receptor endocytosis, although the underlying mechanisms remain unclear. In this study, we show that Grb2 interacts through its SH3 domains with the human Wiskott-Aldrich syndrome protein (WASp), which plays a role in regulation of the actin cytoskeleton. We find that WASp is expressed in a variety of cell types and is exclusively cytoplasmic. Although the N-terminal SH3 domain of Grb2 binds significantly stronger than the C-terminal SH3 domain to WASp, full-length Grb2 shows the strongest binding. Both phosphorylation of WASp and its interaction with Grb2, as well as with another adapter protein Nck, remain constitutive in serum-starved or epidermal growth factor-stimulated cells. WASp coimmunoprecipitates with the activated EGFR after epidermal growth factor stimulation. Purified glutathione S-transferase-full-length-Grb2 fusion protein, but not the individual domains of Grb2, enhances the association of WASp with the EGFR, suggesting that Grb2 mediates the association of WASp with EGFR. This study suggests that Grb2 translocates WASp from the cytoplasm to the plasma membrane and the Grb2-WASp complex may play a role in linking receptor tyrosine kinases to the actin cytoskeleton.  相似文献   

18.
19.
Directional sensing, a process in which cells convert an external chemical gradient into internal signaling events, is essential in chemotaxis. We previously showed that a Rho GTPase, RacE, regulates gradient sensing in Dictyostelium cells. Here, using affinity purification and mass spectrometry, we identify a novel RacE-binding protein, GflB, which contains a Ras GEF domain and a Rho GAP domain. Using biochemical and gene knockout approaches, we show that GflB balances the activation of Ras and Rho GTPases, which enables cells to precisely orient signaling events toward higher concentrations of chemoattractants. Furthermore, we find that GflB is located at the leading edge of migrating cells, and this localization is regulated by the actin cytoskeleton and phosphatidylserine. Our findings provide a new molecular mechanism that connects directional sensing and morphological polarization.  相似文献   

20.
Generation of reactive oxygen species (ROS) by Ras oncogene-induced NADPH oxidase (Nox) 1 is required for Ras transformation phenotypes including anchorage-independent growth, morphological transformation, and tumorigenesity, but the signaling mechanism downstream of Nox1 remains elusive. Rho is known to be a critical regulator of actin stress fiber formation. Nonetheless, Rho was reported to no longer couple to loss of actin stress fibers in Ras-transformed Swiss3T3 cells despite the elevation of Rho activity. In this study, however, we demonstrate that Rho is inactivated in K-Ras-transformed normal rat kidney cells, and that abrogation of Nox1-generated ROS by Nox1 small interference RNAs or diphenyleneiodonium restores Rho activation, suggesting that Nox1-generated oxidants mediate down-regulation of the Rho activity. This down-regulation involves oxidative inactivation of the low molecular weight protein-tyrosine phosphatase by Nox1-generated ROS and a subsequent elevation in the tyrosine-phosphorylated active form of p190RhoGAP, the direct target of the phosphatase. Furthermore, the decreased Rho activity leads to disruption of both actin stress fibers and focal adhesions in Ras-transformed cells. As for Rac1, Rac1 also appears to participate in the down-regulation of Rho via Nox1. Our discovery defines a mediating role of Nox1-redox signaling for Ras oncogene-induced actin cytoskeletal changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号