首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol to yield phosphatidic acid. To date, very little is known about the regulation of DGK activity. We have previously identified the DGKtheta isotype, which is predominantly expressed in brain (Houssa, B., Schaap, D., van der Wal, J., Goto, K., Kondo, H., Yamakawa, A., Shibata, M., Takenawa, T., and Van Blitterswijk, W. J. (1997) J. Biol. Chem. 272, 10422-10428). We now report that DGKtheta binds specifically to activated RhoA in transfected COS cells as well as in nontransfected neuronal N1E-115 cells. Binding is abolished by a point mutation (Y34N) in the effector loop of RhoA. DGKtheta does not bind to inactive RhoA, nor to the other Rho-family GTPases, Rac or Cdc42. Like active RhoA, DGKtheta localizes to the plasma membrane. Strikingly, the binding of activated RhoA to DGKtheta completely inhibits DGK catalytic activity. Our results suggest that DGKtheta is a downstream effector of RhoA and that its activity is negatively regulated by RhoA. Through accumulation of newly produced diacylglycerol, RhoA-mediated inhibition of DGKtheta may lead to enhanced PKC activity in response to external stimuli.  相似文献   

2.
Spin-labeled calmodulin was synthesized and the effects of phospholipids on its conformation were examined by ESR spectroscopy. Phosphatidylserine (0.1-1.0 mM) increased the signal intensity of the ESR spectrum of spin-labeled calmodulin and decreased the apparent rotational correlation time in the presence of 0.1 mM CaCl2. This change was reversed by addition of excess calcium, and in the absence of calcium phosphatidylserine did not change the spectrum, suggesting that the change in spin-labeled calmodulin brought about by phosphatidylserine was not induced by a hydrophobic interaction of the two, but by inhibition of the binding of calcium to calmodulin. L-Serine and O-phospho-L-serine had no effect on the ESR signals of spin-labeled calmodulin. The effects of various other phospholipids were also examined. Their inhibitory activities were in the order phosphatidic acid greater than phosphatidylserine greater than phosphatidylglycerol = phosphatidylinositol; phosphatidylethanolamine and phosphatidylcholine had no effect on the spectra. The effects of these phospholipids were dependent on their binding activities toward calcium. Furthermore, phosphatidic acid and phosphatidylserine at 1 mM reduced the activity of calmodulin-dependent phosphodiesterase by 16.4 and 8.7%, respectively. These findings indicate that spin-labeled calmodulin did not interact with the phospholipids by a hydrophobic interaction, but that calcium binding to spin-labeled calmodulin interfered with phosphatidic acid, phosphatidylserine, phosphatidylglycerol and phosphatidylinositol, and some of these phospholipids inactivated calmodulin. Thus the activity of calmodulin may be regulated in part by some phospholipids.  相似文献   

3.
Sphingosine-1-phosphate (SPP) is a unique sphingolipid metabolite involved in cell growth regulation and signal transduction. SPP is formed from sphingosine in cells by the action of sphingosine kinase, an enzyme whose activity can be stimulated by growth factors. Little is known of the mechanisms by which sphingosine kinase is regulated. We found that acidic phospholipids, particularly phosphatidylserine, induced a dose-dependent increase in sphingosine kinase activity due to an increase in the apparent Vmax of the enzyme. Other acidic phospholipids, such as phosphatidylinositol, phosphatidic acid, phosphatidylinositol bisphosphate, and cardiolipin stimulated sphingosine kinase activity to a lesser extent than phosphatidylserine, whereas neutral phospholipids had no effect. Diacylglycerol, a structurally similar molecule which differs from phosphatidic acid in the absence of the phosphate group, failed to induce any changes in sphingosine kinase activity. Our results suggest that the presence of negative charges on the lipid molecules is important for the potentiation of sphingosine kinase activity, but the effect does not directly correlate with the number of negative charges. These results also support the notion that the polar group confers specificity in the stimulation of sphingosine kinase by acidic glycerophospholipids. The presence of a fatty acid chain in position 2 of the glycerol backbone was not critical since lysophosphatidylserine also stimulated sphingosine kinase, although it was somewhat less potent. Dioleoylphosphatidylserine was the most potent species, including a fourfold stimulation, whereas distearoyl phosphatidylserine was completely inactive. Thus, the degree of saturation of the fatty acid chain of the phospholipids may also play a role in the activation of sphingosine kinase. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Mechanisms involved in regulating the activity of intracellular phospholipase A2 enzymes that function in eicosanoid and platelet-activating factor production are poorly understood. The properties of the substrate in the membrane may play a role in modulating phospholipase A2 activity. In this study, the effect of anionic phospholipids, diacylglycerol (DAG) and phosphatidylethanolamine (PE) on the activity of a partially purified, intracellular, arachidonoyl-hydrolyzing phospholipase A2 from the macrophage cell line, RAW 264.7 was studied. For these experiments phospholipase A2 activity was assayed in the presence of 1 microM calcium by measuring the hydrolysis of [3H]arachidonic acid from sonicated dispersions of the ether-linked substrate, 1-O-hexadecyl-2[3H]arachidonoylglycerophosphocholine. All the anionic phospholipids tested, including phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol (PI) and phosphatidylinositol-4,5-bisphosphate (PIP2), stimulated phospholipase A2 activity. At the lowest concentration of anionic phospholipids tested. PIP2 was the most stimulatory, resulting in a 7-fold increase in phospholipase A2 activity at 1 mol%. Co-dispersion of either DAG or PE with the substrate also induced a dose-dependent increase in phospholipase A2 activity, whereas sphingomyelin was inhibitory suggesting that the phospholipase A2 more readily hydrolyzed the ether-linked substrate when there was a decrease in the packing density of the bilayer. PIP2, together with either DAG or PE, synergistically stimulated phospholipase A2 activity by about 20-fold, and dramatically decreased the calcium concentration (from mM to nM) required for full activity of the enzyme. The results of this study demonstrate that the presence of anionic phospholipids and the packing characteristics of the bilayer can have pronounced effects on the activity and calcium requirement of an intracellular, arachidonoyl-hydrolyzing phospholipase A2 from macrophages.  相似文献   

5.
Structure-activity relationship of diacylglycerol kinase theta   总被引:3,自引:0,他引:3  
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid (PA). Among the nine mammalian isotypes identified, DGKtheta is the only one with three cysteine-rich domains (CRDs) (instead of two) in its N-terminal regulatory region. We previously reported that DGKtheta binds to and is negatively regulated by active RhoA. We now report that RhoA strongly binds to the C-terminal catalytic domain, which would explain its inhibition of DGK activity. To help finding a physiological function of DGKtheta, we further determined its activity in vitro as a function of 15 different truncations and point mutations in the primary structure. Most of these alterations, located throughout the protein, inactivated the enzyme, suggesting that catalytic activity depends on all of its conserved domains. The most C-terminal CRD is elongated with a stretch of 15 amino acids that is highly conserved among DGK isotypes. Mutation analysis revealed a number of residues in this region that were essential for enzyme activity. We suggest that this CRD extension plays an essential role in the correct folding of the protein and/or in substrate presentation to the catalytic region of the protein.  相似文献   

6.
In mammalian systems, Ca2+/diacylglycerol-activated phospholipid-dependent protein kinase (C-kinase) appears to play an important role in regulating physiological responses that outlast the transient rise in cytosolic Ca2+. Electrophysiological experiments in neurons of the nudibranch mollusc, Hermissenda crassicornis, have suggested a role for C-kinase in the long-lasting reductions in early and late K+ currents that have been observed following associative learning. Accordingly, we have investigated the catalytic properties of C-kinase in Hermissenda CNS. Following homogenization in Ca2+-free buffer, C-kinase can be separated from Ca2+/calmodulin-dependent protein kinase by centrifugation; C-kinase activity is found in the supernatant whereas essentially all of the Ca2+/calmodulin-dependent protein kinase is found in the membrane fraction. Addition of Ca2+, phosphatidylserine, and diacylglycerol to the cytosol results in phosphorylation of at least eight endogenous proteins. The Hermissenda CNS C-kinase can also phosphorylate lysine-rich histone, a substrate for mammalian C-kinase. The molluscan enzyme exhibits phospholipid specificity in that phosphatidylserine is much more effective than phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, and phosphatidic acid. Addition of diacylglycerol, in the presence of Ca2+ and phosphatidylserine, increases the activity of the C-kinase. The percentage of activation by diacylglycerol is larger at lower Ca2+ concentrations. Enzyme activity is inhibited by trifluoperazine and polymixin B sulfate. These studies indicate that the Hermissenda C-kinase is catalytically similar to mammalian C-kinase.  相似文献   

7.
Effect of membrane phospholipids on the activity of cytosolic protein-tyrosine kinase from porcine spleen (CPTK-40) has been studied. Using poly(Glu Na, Tyr)4:1 as a substrate, phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine had stimulatory effects on that phosphorylation activity, however phosphatidic acid had inhibitory and phosphatidylinositol had no effects. Similar results were obtained using[Val5]angiotensin II as a substrate. On the other hand using basic protein (H2B histone and myelin basic protein) as substrates, phosphatidic acid stimulated the activity of CPTK-40, while phosphatidylinositol inhibited the activity. Phosphatidylethanolamine, phosphatidylcholine and phosphatidylserine caused different effect on the activity of CPTK-40 depending on the substrate employed. However using acidic protein (tubulin and casein) as substrates, the activity of CPTK-40 was neither stimulated nor inhibited by any phospholipids. These results suggest that phospholipids may modulate the activity of CPTK-40.  相似文献   

8.
BC3H-1 myocytes were cultured with 32PO4 for 3 days to label phospholipids to constant specific activity. Subsequent treatment with physiological concentrations of insulin provoked 40-70% increases in 32PO4 levels (reflecting increases in mass) in phosphatidic acid, phosphatidylinositol, and polyphosphoinositides, and, lesser, 20-25% increases in phosphatidylserine and the combined chromatographic area containing phosphatidylethanolamine plus phosphatidylcholine plus phosphatidylcholine. Insulin-induced increases in phospholipids were significant within 5 min and near-maximal at 15-30 min. Comparable rapid insulin-induced increases in [3H]phosphatidylinositol were observed in myocytes prelabeled with [3H]inositol. These insulin effects (as per prolonged pulse-chase experiments) were due to increase phospholipid synthesis rather than decreased phospholipid degradation. Cycloheximide (and puromycin) pretreatment prevented insulin-induced increases in phospholipids and rapidly reversed ongoing insulin effects on phospholipids and pyruvate dehydrogenase activity. Insulin also rapidly increased diacylglycerol levels. These findings suggest that: (a) insulin provokes rapid increases in de novo synthesis of phosphatidic acid and its derivatives, e.g. phosphoinositides and diacylglycerol; (b) protein synthesis inhibitors diminish phospholipid levels in insulin-treated (but not control) tissues by increasing phospholipid degradation (?phospholipase(s) activation); and (c) changes in phospholipids and diacylglycerol may be important for changes in pyruvate dehydrogenase and other enzymatic activities during treatment with insulin and/or protein synthesis inhibitors.  相似文献   

9.
The effect of glucosylceramide (GlcCer) on activated protein C (APC)-phospholipid interactions was examined using fluorescence resonance energy transfer. Human APC, labeled with either fluorescein (Fl-APC) or dansyl (DEGR-APC) donor, bound to phosphatidylcholine/phosphatidylserine (PC/PS, 9:1 w/w) vesicles containing octadecylrhodamine (OR) acceptor with a K(d) (app) = 16 micro g/ml, whereas Fl-APC (or DEGR-APC) bound to PC/PS/GlcCer(OR) (8:1:1) vesicles with a K(d) (app) = 3 micro g/ml. This 5-fold increase in apparent affinity was not species-specific since bovine DEGR-APC also showed a similar GlcCer-dependent enhancement of binding of APC to PC/PS vesicles. From the efficiency of fluorescence resonance energy transfer, distances of closest approach of approximately 63 and approximately 64 A were estimated between the dansyl on DEGR-APC and rhodamine in PC/PS/GlcCer(OR) and PC/PS(OR), respectively, assuming kappa(2) = 2/3. DEGR-APC bound to short chain C8-GlcCer with an apparent K(d) of 460 nm. The presence of C8-GlcCer selectively enhanced the binding of C16,6-NBD-phosphatidylserine but not C16,6-7-nitrobenz-2-oxa-1,3-diazole (NBD)-phosphatidylcholine to coumarin-labeled APC. These data suggest that APC binds to GlcCer, that PC/PS/GlcCer vesicles like PC/PS vesicles bind to the N-terminal gamma-carboxyglutamic acid domain of APC, and that one mechanism by which GlcCer enhances the activity of APC is by increasing its affinity for membrane surfaces containing negatively charged phospholipids.  相似文献   

10.
The diacylglycerol (DG)/phorbol ester-dependent translocation of conventional protein kinase C (PKC) isozymes is mediated by the C1 domain, a membrane-targeting module that also selectively binds phosphatidylserine (PS). Using stopped-flow spectroscopy, we dissect the contribution of DG/phorbol esters (C1 ligand) and PS in driving the association and dissociation of the C1 domain from membranes. Specifically, we examine the binding to membranes of the C1B domain of PKCbeta with a substituted Trp (Y123W) whose fluorescence is quenched upon binding to membranes. Binding of this construct (C1Bbeta-Y123W) to phospholipid vesicles is cooperative with respect to PS content and dependent on C1 ligand, as previously characterized. Stopped-flow analysis reveals that the apparent association rate (k(on)(app)), but not the apparent dissociation rate (k(off)(app)), is highly sensitive to PS content: the 60-fold increase in membrane affinity for vesicles containing no PS compared with 40 mol % PS results primarily from a robust (30-fold) increase in k(on)(app) with little effect (2-fold) on k(off)(app). Membrane affinity is also controlled by the content and structure of the C1 ligand. In contrast to PS, these ligands markedly alter k(off)(app) with smaller effects on k(on)(app). We also show that the affinity for phorbol ester-containing membranes is 2 orders of magnitude higher than that for DG-containing membranes primarily resulting from differences in k(off)(app). Our data are consistent with a model in which the C1 domain is recruited to the membrane via an initial weak electrostatic interaction with PS, followed by a rapid two-dimensional search for ligand, the binding of which retains the domain at the membrane. Thus, PS drives the initial encounter, and DG/phorbol esters retain the domain on membranes. The decreased effectiveness of DG compared with phorbol esters in retaining the C1 domain on membranes contributes to the molecular dichotomy of the rapid, transient nature of DG-dependent PKC signaling versus the chronic hyperactivity of phorbol ester-activated PKC.  相似文献   

11.
Phospholipid and Ca++ dependency of phorbol ester receptors   总被引:2,自引:0,他引:2  
The phospholipid and Ca++ dependency of a partially purified phorbol ester apo-receptor from the soluble fraction of mouse brain homogenates was studied. This apo-receptor is believed to be identical with the Ca++ and phospholipid-dependent protein kinase C. Binding of phorbol esters to the receptor/kinase C was shown to be entirely dependent on phospholipids. The negatively charged phospholipids phosphatidylserine, phosphatidylinositol, and phosphatidic acid all fully reconstituted binding. The neutral phospholipids were inactive. Among active phospholipids and mixtures of phospholipids, substantial differences (greater than 100-fold) were observed in the amounts required to achieve reconstitution. Although Ca++ was not required for reconstitution of binding activity, it dramatically (up to 100-fold) increased the potency of phospholipids for reconstitution. The phospholipids not only permitted reconstitution of the apo-receptor but also played a major role in determining the binding characteristics of the complex. The KD values of [3H]phorbol 12,13-dibutyrate were in the range of 0.8 nM for the complex with phosphatidylserine to 30 nM for the complex with dioleoyl-phosphatidic acid. Like the binding affinity, the stimulation of protein kinase C activity by phorbol esters was dependent on the phospholipid into which the receptor/kinase C was reconstituted. The importance of the lipid domain for controlling the receptor/kinase C activity and for modulation of cellular sensitivity to phorbol esters is discussed.  相似文献   

12.
The effects of ionophore A23187 on the incorporation of 32Pi into phospholipids and on 45Ca2+ uptake and release by polymorphonuclear leukocytes were examined. A23187 increased 32Pi incorporation into phosphatidic acid, phosphatidylglycerol, phosphatidylserine, and the phosphoinositides. It also promoted a rapid burst uptake and release of 45Ca2+ by leukocytes. External Ca2+, but not Mg2+, was required for full stimulation of 32Pi incorporation into phosphatidic acid and the phosphoinositides. In the absence of external Ca2+, the increased radiophosphorus activity of phosphatidic acid, phosphatidylserine and the phosphoinositides was grossly reduced but not eliminated, and the decreased radiophosphorus activity of phosphatidylcholine became pronounced. In addition, the ionophore effect on 32Pi incorporation into leukocyte phospholipids was not abolished by ethyleneglycol bis(beta-amino-ethylether)-N,N'-tetraacetic acid. ATP radiophosphorus activity was also enhanced by the presence of A23187, but the enhancement was much less than that of the acidic phospholipids. Based on these findings, it is suggested that the increased 32Pi incorporation into the acidic phospholipids of leukocytes induced by A23187 was not solely derived from the higher radioactivity of ATP, increased Ca2+ fluxes and perturbation of cellular Ca2+ distribution of leukocytes exposed to A 23187 may trigger part of the altered 32Pi incorporation into phospholipids.  相似文献   

13.
The number of phosphatidylserine molecules involved in activating protein kinase C was determined in a mixed micelle system where one monomer of protein kinase C binds to one detergent:lipid micelle of fixed composition. Unusually high cooperativity, specificity, and multiplicity in the protein kinase C-phospholipid interaction are demonstrated by examining the lipid dependence of enzymatic activity. The rates of autophosphorylation and substrate (histone) phosphorylation are specifically regulated by the phosphatidylserine content of the micelles. Hill coefficients of 8-11 were calculated for phosphatidylserine-dependent stimulation of enzyme activity, with a maximum occurring in micelles containing greater than or equal to 12 phosphatidylserine molecules. The high specificity that exists is illustrated by the fact that phosphatidylethanolamine and phosphatidylglycerol, but not phosphatidylcholine or phosphatidic acid, can replace only some of the phosphatidylserine molecules. We propose that Ca2+ and acidic phospholipids cause the protein to undergo a conformation change revealing multiple phosphatidylserine binding sites and resulting in the highly cooperative and specific interaction of protein kinase C with phosphatidylserine. Consistent with this, the proteolytic sensitivity of protein kinase C increases approximately 10-fold in the presence of phosphatidylserine and Ca2+ compared to Ca2+ alone. The high degree of cooperativity and specificity may provide a sensitive method for the physiological regulation of protein kinase C by phospholipid.  相似文献   

14.
Digestion of dietary sphingomyelin (SM) is catalyzed by intestinal alkaline sphingomyelinase (SMase) and may have important implications in colonic tumorigenesis. Previous studies demonstrated that the digestion and absorption of dietary SM was slow and incomplete and that the colon was exposed to SM and its hydrolytic products including ceramide. In the present work, we studied the influences of glycerophospholipids and hydrolytic products of phosphatidylcholine (PC; i.e., lyso-PC, fatty acid, diacylglycerol, and phosphorylcholine) on SM hydrolysis induced by purified rat intestinal alkaline SMase in the presence of 10 mM taurocholate. It was found that various phospholipids including PC, phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and phosphatidic acid (PA) inhibit alkaline SMase activity in a dose-dependent manner, with the degree of inhibition being in the order PA > PS > PI > PC > PE. Similar inhibition was also seen in a buffer of pH 7.4, which is close to the physiologic pH in the middle of the small intestine. When the effects of hydrolytic products of PC were studied, lyso-PC, oleic acid, and 1,2-dioleoyl glycerol also inhibited alkaline SMase activity, whereas phosphorylcholine enhanced SMase activity. However, in the absence of bile salt, acid phospholipids including PA, PS, and PI mildly stimulated alkaline SMase activity whereas PC and PE had no effect. It is concluded that in the presence of bile salts, glycerophospholipids and their hydrolytic products inhibit intestinal alkaline SMase activity. This may contribute to the slow rate of SM digestion in the upper small intestine.  相似文献   

15.
Protein kinase C (PKC) I (gamma), II (beta) and III (alpha) subspecies are all activated by 1,1-di-(p-hydroxyphenyl)ethylene derivatives (DPE) at micromolar concentrations. This PKC activation depends on the presence of both Ca2+ and phosphatidylserine (PS) but does not require diacylglycerol (DG). DPEs enhance PKC activity at low PS concentrations, but not at saturating PS concentrations. Like DG, DPEs increase the apparent affinity of PKC for PS as well as for Ca2+, but lead to a decrease in the catalytic activity (Vmax). In the presence of saturating DG concentrations, DPEs exhibit an inhibitory action. The derivatives also inhibit the activity of the proteolytic fragment of PKC, protein kinase M. It is concluded that DPEs are mixed-type inhibitors, probably interacting with the catalytic domain of the enzyme.  相似文献   

16.
The regulation of protein kinase C by oleic acid was studied, and parameters that characterize the activation of protein kinase C by oleic acid and distinguish its effects from those of diacylglycerol (DAG) and phosphatidylserine (PS) were delineated. Activation of protein kinase C by sodium oleate required the presence of calcium and showed mild cooperative behavior (Hill number of 1.25) suggesting that Ca(oleate)2 is the active species. Kinetic analysis of the interaction of sodium oleate with substrates indicated that sodium oleate acted to increase the activity of the enzyme without modulating the KM for either MgATP or histone substrates. In this respect, sodium oleate action resembled that of DAG but not PS. However, multiple parameters distinguished the effects of sodium oleate from those of DAG. Unlike DAG, sodium oleate was unable to inhibit phorbol dibutyrate binding to protein kinase C. Sodium oleate also failed to interact with micelle-bound protein kinase C and preferentially activated "soluble" protein kinase C. The addition of histone caused protein/lipid aggregation in the presence of DAG but not in the presence of oleate. Activation of protein kinase C by sodium oleate or by PS/DAG demonstrated differential susceptibility to the action of inhibitors. Sphingosine and NaCl were more potent in inhibiting activation of protein kinase C by PS/DAG than by sodium oleate. Sodium oleate also expressed PS-like activity in that calcium and oleate acted as cofactors in activation of protein kinase C by DAG. Similar to PS, the ability of oleate to act in synergy with DAG resulted from "competitive" activation with a decrease in KM(app) of protein kinase C for DAG. Finally, sodium oleate was unable to induce autophosphorylation of protein kinase C. These studies demonstrate that oleate activates protein kinase C by a mechanism that is distinct from PS/DAG but partially overlaps the kinetic effects of both PS and DAG. The significance of these studies is discussed in relation to mechanisms of protein kinase C activation and to the possible physiological relevance of activation of protein kinase C by fatty acids.  相似文献   

17.
A mixed micellar assay for the binding of phorbol-esters to protein kinase C was developed to investigate the specificity and stoichiometry of phospholipid cofactor dependence and oligomeric state of protein kinase C (Ca2+/phospholipid-dependent enzyme) required for phorbol ester binding. [3H]Phorbol dibutyrate was bound to protein kinase C in the presence of Triton X-100 mixed micelles containing 20 mol % phosphatidylserine (PS) in a calcium-dependent manner with a Kd of 5 X 10(-9) M. The [3H]phorbol dibutyrate X protein kinase C . Triton X-100 . PS mixed micellar complex eluted on a Sephacryl S-200 molecular sieve at an Mr of approximately 200,000; this demonstrates that monomeric protein kinase C binds phorbol dibutyrate. This conclusion was supported by molecular sieve chromatography of a similar complex where Triton X-100 was replaced with beta-octylglucoside. Phorbol dibutyrate activation of protein kinase C in Triton X-100/PS mixed micelles occurred and was dependent on calcium. The PS dependence of both phorbol ester activation and binding to protein kinase C lagged initially and then was highly cooperative. The minimal mole per cent PS required was strongly dependent on the concentration of phorbol dibutyrate or phorbol myristic acetate employed. Even at the highest concentration of phorbol ester tested, a minimum of 3 mol % PS was required; this indicates that approximately four molecules of PS are required. [3H]Phorbol dibutyrate binding was independent of micelle number at 20 mol % PS. The phospholipid dependencies of phorbol ester binding and activation were similar, with PS being the most effective; anionic phospholipids (cardiolipin, phosphatidic acid, and phosphatidylglycerol were less effective, whereas phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin did not support binding or activation. sn-1,2-Dioleoylglycerol displaced [3H]phorbol dibutyrate quantitatively and competitively. The data are discussed in relation to a molecular model of protein kinase C activation.  相似文献   

18.
Interactions of types I, II, and III protein kinase C (PKC) with phospholipids were investigated by following the changes in protein kinase activity and phorbol ester binding. The acidic phospholipids such as phosphatidylserine (PS), phosphatidic acid, phosphatidyl-glycerol, and cardiolipin, which are activators of PKC in the assay of protein phosphorylation, could differentially inactivate PKC I, II, and III during preincubation in the absence of divalent cation. The phospholipid-induced inactivation of PKC was concentration and time dependent and only affected the kinase activity without influencing phorbol ester binding. PKC I was the most susceptible to the phospholipid-induced inactivation, and PKC III was the least. The IC50 values of PS for PKC I, II, and III were 5, 45, and greater than 120 microM, respectively. Addition of divalent cation such as Ca2+ or Mg2+ suppressed the phospholipid-induced inactivation of PKC. In the absence of divalent cation, PKC I, II, and III all formed complexes with PS vesicles, although to a slightly different degree, as analyzed by molecule sieve chromatography. [3H]Phorbol 12,13-dibutyrate binding for PKC I, II, and III was recovered after chromatography; however, the kinase activities of all these enzymes were greatly reduced. In the presence of Ca2+, all three PKCs formed complexes with PS vesicles, and both the kinase and phorbol ester-binding activities of PKC II and III were recovered following chromatography. Under the same conditions, the phorbol ester-binding activity of PKC I was also recovered, but the kinase activity was not. The phospholipid-induced inactivation of PKC apparently results from a direct interaction of phospholipid with the catalytic domain of PKC; this interaction can be suppressed by divalent cations. In the presence of divalent cations, PS interacted preferentially with the regulatory domain of PKC and resulted in the activation of the kinase.  相似文献   

19.
To evaluate the role of the C2 domain in protein kinase Cepsilon (PKCepsilon) localization and activation after stimulation of the IgE receptor in RBL-2H3 cells, we used a series of mutants located in the phospholipid binding region of the enzyme. The results obtained suggest that the interaction of the C2 domain with the phospholipids in the plasma membrane is essential for anchoring the enzyme in this cellular compartment. Furthermore, the use of specific inhibitors of the different pathways that generate both diacylglycerol and phosphatidic acid has shown that the phosphatidic acid generated via phospholipase D (PLD)-dependent pathway, in addition to the diacylglycerol generated via phosphoinosite-phospholipase C (PLC), are involved in the localization of PKCepsilon in the plasma membrane. Direct stimulation of RBL-2H3 cells with very low concentrations of permeable phosphatidic acid and diacylglycerol exerted a synergistic effect on the plasma membrane localization of PKCepsilon. Moreover, the in vitro kinase assays showed that both phosphatidic acid and diacylglycerol are essential for enzyme activation. Together, these results demonstrate that phosphatidic acid is an important and essential activator of PKCepsilon through the C2 domain and locate this isoenzyme in a new scenario where it acts as a downstream target of PLD.  相似文献   

20.
M Esmann  D Marsh 《Biochemistry》1985,24(14):3572-3578
The pH dependence and salt dependence of the lipid-protein interactions of phosphatidic acid, phosphatidylserine, and stearic acid with Na+,K+-ATPase membranes from Squalus acanthias have been studied with spin-label electron spin resonance spectroscopy, using lipids with nitroxide labels on the 14-position C atom of the sn-2 chain. For phosphatidic acid and stearic acid, the fraction of motionally restricted spin-label increases with increasing pH, with pKa's of 6.6 and 8.0, respectively. In contrast, the pKa of stearic acid in the bulk lipid environment of the membrane is estimated from spin-label spectroscopy to be approximately equal to 6.6. The fraction of motionally restricted phosphatidylserine spin-label remains constant over the pH range 4.7-9.2. In the fully dissociated state the fractions of motionally restricted spin-labeled phosphatidic and stearic acids decrease with increasing salt concentration, reaching an approximately constant value at [NaCl] = 0.5-1.0 M. For stearic acid the net decrease is comparable to that obtained on protonation, but for phosphatidic acid the decrease is considerably smaller (by approximately 55%) than that obtained on protonating the lipid. The fraction of motionally restricted phosphatidylserine spin-label varies relatively little with salt concentration up to 1 M NaCl. Direct electrostatic effects alone cannot account for the whole of the observed specificity of interaction of the two phospholipids with Na+,K+-ATPase membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号