首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of interhalogen compounds was proposed more than a century ago, but no biological roles have been attributed to these highly oxidizing intermediates. In this study, we determined whether the peroxidases of white blood cells can generate the interhalogen gas bromine chloride (BrCl). Myeloperoxidase, the heme enzyme secreted by activated neutrophils and monocytes, uses H2O2 and Cl(-) to produce HOCl, a chlorinating intermediate. In contrast, eosinophil peroxidase preferentially converts Br(-) to HOBr. Remarkably, both myeloperoxidase and eosinophil peroxidase were able to brominate deoxycytidine, a nucleoside, and uracil, a nucleobase, at plasma concentrations of Br(-) (100 microM) and Cl(-) (100 mM). The two enzymes used different reaction pathways, however. When HOCl brominated deoxycytidine, the reaction required Br(-) and was inhibited by taurine. In contrast, bromination by HOBr was independent of Br(-) and unaffected by taurine. Moreover, taurine inhibited 5-bromodeoxycytidine production by the myeloperoxidase-H2O2-Cl(-)- Br(-) system but not by the eosinophil peroxidase-H2O2-Cl(-)-Br(-) system, indicating that bromination by myeloperoxidase involves the initial production of HOCl. Both HOCl-Br(-) and the myeloperoxidase-H2O2-Cl(-)-Br(-) system generated a gas that converted cyclohexene into 1-bromo-2-chlorocyclohexane, implicating BrCl in the reaction. Moreover, human neutrophils used myeloperoxidase, H2O2, and Br(-) to brominate deoxycytidine by a taurine-sensitive pathway, suggesting that transhalogenation reactions may be physiologically relevant. 5-Bromouracil incorporated into nuclear DNA is a well known mutagen. Our observations therefore raise the possibility that transhalogenation reactions initiated by phagocytes provide one pathway for mutagenesis and cytotoxicity at sites of inflammation.  相似文献   

2.
Stimulation of the oxygen (O2) metabolism of isolated human neutrophilic leukocytes resulted in oxidation of hemoglobin of autologous erythrocytes without erythrocyte lysis. Hb oxidation could be accounted for by reduction of O2 to superoxide (O-2) by the neutrophils, dismutation of O-2 to yield hydrogen peroxide (H2O2), myeloperoxidase-catalyzed oxidation of chloride (Cl-) by H2O2 to yield hypochlorous acid (HOCl), the reaction of HOCl with endogenous ammonia (NH+4) to yield monochloramine ( NH2Cl ), and the oxidative attack of NH2Cl on erythrocytes. NH2Cl was detected when HOCl reacted with the NH+4 and other substances released into the medium by neutrophils. The amount of NH+4 released was sufficient to form the amount of NH2Cl required for the observed Hb oxidation. Oxidation was increased by adding myeloperoxidase or NH+4 to increase NH2Cl formation. Due to the volatility of NH2Cl , Hb was oxidized when neutrophils and erythrocytes were incubated separately in a closed container. Oxidation was decreased by adding catalase to eliminate H2O2, dithiothreitol to reduce HOCl and NH2Cl , or taurine to react with HOCl or NH2Cl to yield taurine monochloramine . NH2Cl was up to 50 times more effective than H2O2, HOCl, or taurine monochloramine as an oxidant for erythrocyte Hb, whereas HOCl was up to 10 times more effective than NH2Cl as a lytic agent. NH2Cl contributes to oxidation of erythrocyte components by stimulated neutrophils and may contribute to other forms of neutrophil oxidative cytotoxicity.  相似文献   

3.
Inhibition of myeloperoxidase by salicylhydroxamic acid.   总被引:2,自引:0,他引:2       下载免费PDF全文
Salicylhydroxamic acid inhibited the luminol-dependent chemiluminescence of human neutrophils stimulated by phorbol 12-myristate 13-acetate or the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe). This compound had no inhibitory effect on the kinetics of O2.- generation or O2 uptake during the respiratory burst, but inhibited both the peroxidative activity of purified myeloperoxidase and the chemiluminescence generated by a cell-free myeloperoxidase/H2O2 system. The concentration of salicylhydroxamic acid necessary for complete inhibition of myeloperoxidase activity was 30-50 microM (I50 values of 3-5 microM) compared with the non-specific inhibitor NaN3, which exhibited maximal inhibition at 100-200 microM (I50 values of 30-50 microM). Whereas taurine inhibited the luminol chemiluminescence of an H2O2/HOC1 system by HOC1 scavenging, this compound had little effect on myeloperoxidase/H2O2-dependent luminol chemiluminescence; in contrast, 10 microM-salicylhydroxamic acid did not quench HOC1 significantly but greatly diminished myeloperoxidase/H2O2-dependent luminol chemiluminescence, indicating that its effects on myeloperoxidase chemiluminescence were largely due to peroxidase inhibition rather than non-specific HOC1 scavenging. Salicylhydroxamic acid prevented the formation of myeloperoxidase Compound II, but only at low H2O2 concentrations, suggesting that it may compete for the H2O2-binding site on the enzyme. These data suggest that salicylhydroxamic acid may be used as a potent inhibitor to delineate the function of myeloperoxidase in neutrophil-mediated inflammatory events.  相似文献   

4.
An important aspect of myocardial injury is the role of neutrophils in post-ischemic damage to the heart. Stimulated neutrophils initiate a series of reactions that produce toxic oxidizing agents. Superoxide rapidly dismutases to H2O2 and neutrophils contain myeloperoxidase which catalyzes the oxidation of Cl- by H2O2 to yield hypochlorous acid (HOCl). The highly reactive HOCl combines non-enzymatically with nitrogenous compounds to generate long-lived, non-radical oxidants, monochloramine and taurine N-monochloramine. We investigated the role of oxygen radicals and long-lived oxidants on cardiac sarcoplasmic reticulum function, which plays a major role in the regulation of intracellular Ca2+ and thereby in the generation of force. Incubation of sarcoplasmic reticulum with phorbol myristate acetate (PMA)-stimulated neutrophils (4 x 10(6) cells/ml) significantly decreased calcium uptake rate (0.85 +/- 0.11 to 0.11 +/- 0.06 mumol/min per mg) and Ca2+-ATPase activity (1.67 +/- 0.08 to 0.46 +/- 0.10 mumol/min per mg). Inclusion of myeloperoxidase inhibitors (cyanide, sodium azide and 3-amino-1,2,4-triazole), catalase, superoxide dismutase plus catalase, and alpha-tocopherol significantly protected (P less than 0.01) calcium uptake rates and Ca2+-ATPase activity of sarcoplasmic reticulum. Superoxide dismutase (10 microgram/ml) alone or deferoxamine (1 mM) had no protective effect in this system. The maximum inhibition of sarcoplasmic reticulum function was observed with (3-4) x 10(6) cells/ml in 4-6 min. HOCl and NH2Cl inhibited calcium uptake rate and Ca2+-ATPase activity of sarcoplasmic reticulum in a dose-dependent manner (2-20 microM), whereas H2O2 damaged sarcoplasmic reticulum at concentrations ranging from 5 to 25 mM. HOCl (20 microM) inhibited 80-90% of Ca2+-uptake rate and Ca2+-ATPase activity and L-methionine (0.1-1 mM) provided complete protection. We conclude that stimulated neutrophils damage cardiac sarcoplasmic function by generation of myeloperoxidase-catalyzed oxidants.  相似文献   

5.
Myeloperoxidase, a heme enzyme secreted by activated phagocytes, uses H(2)O(2) and Cl(-) to generate the chlorinating intermediate hypochlorous acid (HOCl). This potent cytotoxic oxidant plays a critical role in host defenses against invading pathogens. In this study, we explore the possibility that myeloperoxidase-derived HOCl might oxidize nucleic acids. When we exposed 2'-deoxycytidine to the myeloperoxidase-H(2)O(2)-Cl(-) system, we obtained a single major product that was identified as 5-chloro-2'-deoxycytidine using mass spectrometry, high performance liquid chromatography, UV-visible spectroscopy, and NMR spectroscopy. 5-Chloro-2'-deoxycytidine production by myeloperoxidase required H(2)O(2) and Cl(-), suggesting that HOCl is an intermediate in the reaction. However, reagent HOCl failed to generate 5-chloro-2'-deoxycytidine in the absence of Cl(-). Moreover, chlorination of 2'-deoxycytidine was optimal under acidic conditions in the presence of Cl(-). These results implicate molecular chlorine (Cl(2)), which is in equilibrium with HOCl through a reaction requiring Cl(-) and H(+), in the generation of 5-chloro-2'-deoxycytidine. Activated human neutrophils were able to generate 5-chloro-2'-deoxycytidine. Cellular chlorination was blocked by catalase and heme poisons, consistent with a myeloperoxidase-catalyzed reaction. The myeloperoxidase-H(2)O(2)-Cl(-) system generated similar levels of 5-chlorocytosine in RNA and DNA in vitro. In striking contrast, only cell-associated RNA acquired detectable levels of 5-chlorocytosine when intact Escherichia coli was exposed to the myeloperoxidase system. This observation suggests that oxidizing intermediates generated by myeloperoxidase selectively target intracellular RNA for chlorination. Collectively, these results indicate that Cl(2) derived from HOCl generates 5-chloro-2'-deoxycytidine during the myeloperoxidase-catalyzed oxidation of 2'-deoxycytidine. Phagocytic generation of Cl(2) therefore may constitute one mechanism for oxidizing nucleic acids at sites of inflammation.  相似文献   

6.
In this study the formation of DNA single-strand breaks in MNL in close proximity to activated phagocytes, or in contact with added H2O2 and/or HOCl, were evaluated. Neutrophils activated by phorbol myristate acetate (PMA), induced DNA-strand breaks in neighboring lymphocytes which increased after 1-2 h incubation in a repair medium. These DNA-strand breaks could be prevented by the addition of catalase or substitution of the neutrophils with cells from a patient with chronic granulomatous disease. Inclusion of the myeloperoxidase (MPO) inhibitor, sodium azide (NaN3), to the system was associated with less damage after 1-2 h incubation and a faster repair rate. Exposure of MNL to added reagent H2O2 (12-100 microM) was also accompanied by DNA damage. Addition of reagent HOCl (3-25 microM) did not induce any DNA-strand breaks. However, when combined with H2O2 (12.5 microM), HOCl increased H2O2-mediated DNA damage and compromised the repair process. Interactions between the phagocyte-derived reactive oxidants H2O2 and HOCl are probably involved in the etiology of inflammation-related cancer.  相似文献   

7.
Myeloperoxidase catalyses the conversion of H2O2 and Cl- to hypochlorous acid (HOCl). It also reacts with O2- to form the oxy adduct (compound III). To determine how O2- affects the formation of HOCl, chlorination of monochlorodimedon by myeloperoxidase was investigated using xanthine oxidase and hypoxanthine as a source of O2- and H2O2. Myeloperoxidase was mostly converted to compound III, and H2O2 was essential for chlorination. At pH 5.4, superoxide dismutase (SOD) enhanced chlorination and prevented formation of compound III. However, at pH 7.8, SOD inhibited chlorination and promoted formation of the ferrous peroxide adduct (compound II) instead of compound III. We present spectral evidence for a direct reaction between compound III and H2O2 to form compound II, and for the reduction of compound II by O2- to regenerate native myeloperoxidase. These reactions enable compound III and compound II to participate in the chlorination reaction. Myeloperoxidase catalytically inhibited O2- -dependent reduction of Nitro Blue Tetrazolium. This inhibition is explained by myeloperoxidase undergoing a cycle of reactions with O2-, H2O2 and O2-, with compounds III and II as intermediates, i.e., by myeloperoxidase acting as a combined SOD/catalase enzyme. By preventing the accumulation of inactive compound II, O2- enhances the activity of myeloperoxidase. We propose that, under physiological conditions, this optimizes the production of HOCl and may potentiate oxidant damage by stimulated neutrophils.  相似文献   

8.
Stimulated neutrophils discharge large quantities of superoxide (O2.-), which dismutates to form H2O2. In combination with Cl-, H2O2 is converted into the potent oxidant hypochlorous acid (HOCl) by the haem enzyme myeloperoxidase. We have used an H2O2 electrode to monitor H2O2 uptake by myeloperoxidase, and have shown that in the presence of Cl- this accurately represents production of HOCl. Monochlorodimedon, which is routinely used to assay production of HOCl, inhibited H2O2 uptake by 95%. This result confirms that monochlorodimedon inhibits myeloperoxidase, and that the monochlorodimedon assay grossly underestimates the activity of myeloperoxidase. With 10 microM-H2O2 and 100 mM-Cl-, myeloperoxidase had a neutral pH optimum. Increasing the H2O2 concentration to 100 microM lowered the pH optimum to pH 6.5. Above the pH optimum there was a burst of H2O2 uptake that rapidly declined due to accumulation of Compound II. High concentrations of H2O2 inhibited myeloperoxidase and promoted the formation of Compound II. These effects of H2O2 were decreased at higher concentrations of Cl-. We propose that H2O2 competes with Cl- for Compound I and reduces it to Compound II, thereby inhibiting myeloperoxidase. Above pH 6.5, O2.- generated by xanthine oxidase and acetaldehyde prevented H2O2 from inhibiting myeloperoxidase, increasing the initial rate of H2O2 uptake. O2.- allowed myeloperoxidase to function optimally with 100 microM-H2O2 at pH 7.0. This occurred because, as previously demonstrated, O2.- prevents Compound II from accumulating by reducing it to ferric myeloperoxidase. In contrast, at pH 6.0, where Compound II did not accumulate, O2.- retarded the uptake of H2O2. We propose that by generating O2.- neutrophils prevent H2O2 and other one-electron donors from inhibiting myeloperoxidase, and ensure that this enzyme functions optimally at neutral pH.  相似文献   

9.
Oxidized low-density lipoprotein (LDL) is implicated in atherogenesis, and human atherosclerotic lesions contain LDL oxidized by myeloperoxidase, a heme protein secreted by activated phagocytes. Using hydrogen peroxide (H(2)O(2)), myeloperoxidase generates hypochlorous acid (HOCl), a powerful oxidant. We now demonstrate that HOCl produces sulfenamides, sulfinamides, and sulfonamides in model peptides, which suggests a potential mechanism for LDL oxidation and cross-linking. When we exposed the synthetic peptide PFKCG to HOCl, the peptide's thiol residue reacted rapidly, generating a near-quantitative yield of products. Tandem mass spectrometric analysis identified the products as the sulfenamide, sulfinamide, and sulfonamide, all formed by intramolecular cross-linking of the peptide's thiol and lysine residues. An intramolecular sulfinamide was also observed after the peptide PFRCG was exposed to HOCl, indicating that the guanidine group of arginine can also form a sulfur-nitrogen cross-link. The synthetic peptide PFVCG, which contains a free thiol residue but lacks nucleophilic amino acid side chains, formed an intermolecular sulfonamide when exposed to HOCl. Tandem mass spectrometric analysis of the dimer revealed that the free N-terminal amino group of one PFVCG molecule cross-linked with the thiol residue of another. This peptide also formed intermolecular sulfonamide cross-links with N(alpha)-acetyllysine after exposure to HOCl, demonstrating that the epsilon-amino group of a lysine residue can undergo a similar reaction. Moreover, human neutrophils used the myeloperoxidase-H(2)O(2) system to generate sulfinamides in model peptides containing lysine or arginine residues. Collectively, our observations raise the possibility that HOCl generated by myeloperoxidase contributes to intramolecular and intermolecular protein cross-linking in the artery wall. Myeloperoxidase might also use this mechanism to form sulfur-nitrogen cross-links in other inflammatory conditions.  相似文献   

10.
1,3-Butadiene was oxidized by human myeloperoxidase in the absence of KCl to yield butadiene monoxide (BM) and crotonaldehyde (CA), but at KCl concentrations higher than 50 mM, 1-chloro-2-hydroxy-3-butene (CHB) was the major metabolite detected; metabolite formation was dependent on incubation time, pH, KCl, 1,3-butadiene, and H2O2 concentrations. The data are best explained by 1,3-butadiene being oxidized by myeloperoxidase by two different mechanisms. First, oxygen transfer from the hemoprotein would occur to either C-1 or C-4 of 1,3-butadiene to form an intermediate which may cyclize to form BM or undergo a hydrogen shift to form 3-butenal, an unstable precursor of CA. Further evidence for this mechanism was provided by the inability to detect methyl vinyl ketone, a possible product of an oxygen transfer reaction to C-2 or C-3 of 1,3-butadiene, and by the finding that CA was not simply a decomposition product of BM under assay conditions. In the second mechanism, however, chloride ion is oxidized by myeloperoxidase to HOCl which reacts with 1,3-butadiene to yield CHB. Further evidence for this mechanism was provided by the finding that CHB was readily formed when 1,3-butadiene was added to the filtrate of a myeloperoxidase/H2O2/KCl incubation and when 1,3-butadiene was allowed to react with authentic HOCl. In addition, CHB was not detected when BM or CA was incubated with myeloperoxidase, H2O2, and KCl for up to 60 min, or when 1,3-butadiene and KCl were incubated with chloroperoxidase and H2O2 or with mouse liver microsomes and NADPH, enzyme systems which catalyze 1,3-butadiene oxidation to BM and CA, but unlike myeloperoxidase, do not catalyze chloride ion oxidation to HOCl. These results provide clear evidence for novel olefinic oxidation reactions by myeloperoxidase.  相似文献   

11.
We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAP kinase), the extracellular regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK), by the myeloperoxidase-derived oxidant HOCl, in human umbilical vein endothelial cells (HUVEC) and human skin fibroblasts. Treatment of fibroblasts with 10-30 microM HOCl induced a dose-dependent increase in the tyrosine phosphorylation of several proteins. ERK1/2 was activated by exposure to sublethal concentrations of reagent HOCl or by HOCl generated by myeloperoxidase as shown by immune complex kinase assays. Maximum activation was seen at 20 microM and peak activation occurred within 10 min. Western blot analysis demonstrated activation of p38 with 30 microM HOCl, occurring at 15-30 min. No activation of JNK was detected in the concentration range investigated. These results show that HOCl is able to activate MAP kinases. Effective doses were considerably lower than with H2O2 and the lack of JNK activation contrasts with the activation frequently seen with H2O2. Exposure to HOCl caused a loss of viability in HUVEC that was markedly enhanced when ERK1/2 activation was inhibited by U0126. This suggests that the activation of ERK promotes cell survival in response to the oxidative challenge.  相似文献   

12.
Chlorination of proteins by the myeloperoxidase-H2O2-Cl- system results in light emission. Out of all amino acids present in proteins only tryptophan delivers light during chlorination. Chlorination of tryptophan by the myeloperoxidase-H2O2-Cl- system, as well as by HOCl or taurine chloramine is associated with chemiluminescence. pH dependence and time pattern of light emission is similar for chlorination of tryptophan by the myeloperoxidase system and taurine, but appears to be different for chlorination by HOCl. Aerobic conditions are necessary for chemiluminescence of chlorinated tryptophan.  相似文献   

13.
Hypochlorous acid (HOCl), generated by myeloperoxidase from H2O2 and Cl-, plays an important role in host defense and inflammatory tissue injury. We report here the identification of products generated from 2'-deoxyguanosine (dGuo) with HOCl. When 1 mM dGuo and 1 mM HOCl were reacted at pH 7.4 and 37 degrees C for 15 min and the reaction was terminated with N-acetylcysteine (N-AcCys), two products were generated in addition to 8-chloro-2'-deoxyguanosine (8-Cl-dGuo). One was identified as an amino-imidazolone nucleoside (dIz), a previously reported product of dGuo with other oxidation systems. The other was identified as a novel diimino-imidazole nucleoside, 2,5-diimino-4-[(2-deoxy-beta-D-erythro-pentofuranosyl)amino]-2H,5H-imidazole (dDiz) by spectrometric measurements. The yields were 1.4% dDiz, 0.6% dIz and 2.4% 8-Cl-dGuo, with 61.5% unreacted dGuo. Precursors of dDiz and dIz containing a chlorine atom were found in the reaction solution in the absence of termination by N-AcCys. dDiz, dIz and 8-Cl-dGuo were also formed from the reaction of dGuo with myeloperoxidase in the presence of H2O2 and Cl- under mildly acidic conditions. These results imply that dDiz and dIz are generated from dGuo via chlorination by electrophilic attack of HOCl and subsequent dechlorination by N-AcCys. These products may play a role in cytotoxic and/or genotoxic effects of HOCl.  相似文献   

14.
Oxidative damage to DNA has been implicated in carcinogenesis during chronic inflammation. Epidemiological and biochemical studies suggest that one potential mechanism involves myeloperoxidase, a hemeprotein secreted by human phagocytes. In this study, we demonstrate that human neutrophils use myeloperoxidase to oxidize uracil to 5-chlorouracil in vitro. Uracil chlorination by myeloperoxidase or reagent HOCl exhibited an unusual pH dependence, being minimal at pH approximately 5, but increasing markedly under either acidic or mildly basic conditions. This bimodal curve suggests that myeloperoxidase initially produces HOCl, which subsequently chlorinates uracil by acid- or base-catalyzed reactions. Human neutrophils use myeloperoxidase and H2O2 to chlorinate uracil, suggesting that nucleobase halogenation reactions may be physiologically relevant. Using a sensitive and specific mass spectrometric method, we detected two products of myeloperoxidase, 5-chlorouracil and 5-bromouracil, in neutrophil-rich human inflammatory tissue. Myeloperoxidase is the most likely source of 5-chlorouracil in vivo because halogenated uracil is a specific product of the myeloperoxidase system in vitro. In contrast, previous studies have demonstrated that 5-bromouracil could be generated by either eosinophil peroxidase or myeloperoxidase, which preferentially brominates uracil at plasma concentrations of halide and under moderately acidic conditions. These observations indicate that the myeloperoxidase system promotes nucleobase halogenation in vivo. Because 5-chlorouracil and 5-bromouracil can be incorporated into nuclear DNA, and these thymine analogs are well known mutagens, our observations raise the possibility that halogenation reactions initiated by phagocytes provide one pathway for mutagenesis and cytotoxicity at sites of inflammation.  相似文献   

15.
Activated human neutrophils secrete myeloperoxidase, which generates HOCl from H2O2 and Cl(-). We have found that various (2'-deoxy)nucleosides react with HOCl to form chlorinated (2'-deoxy)nucleosides, including novel 8-chloro(2'-deoxy)guanosine, 5-chloro(2'-deoxy)cytidine, and 8-chloro(2'-deoxy)adenosine formed in yields of 1.6, 1.6, and 0.2%, respectively, when 0.5 mM nucleoside reacted with 0.5 mM HOCl at pH 7.4. The relative chlorination, oxidation, and nitration activities of HOCl, myeloperoxidase, and activated human neutrophils in the presence and absence of nitrite were studied by analyzing 8-chloro-, 8-oxo-7,8-dihydro-, and 8-nitro-guanosine, respectively, using guanosine as a probe. 8-Chloroguanosine was always more easily formed than 8-oxo-7,8-dihydro- or 8-nitro-guanosine. Using electrospray ionization tandem mass spectrometry, we show that several chlorinated nucleosides including 8-chloro(2'-deoxy)guanosine are formed following exposure of isolated DNA or RNA to HOCl. Micromolar concentrations of tertiary amines such as nicotine and trimethylamine dramatically enhanced chlorination of free (2'-deoxy)nucleosides and nucleosides in RNA by HOCl. As the G-463A polymorphism of the MPO gene, which strongly reduces myeloperoxidase mRNA expression, is associated with a reduced risk of lung cancer, chlorination damage of DNA /RNA and nucleosides by myeloperoxidase and its enhancement by nicotine may be important in the pathophysiology of human diseases associated with tobacco habits.  相似文献   

16.
Oxidants derived from inflammatory phagocytes compose a key element of the host immune defense system and can kill mammalian cells by one of several different mechanisms. In this report, we compare mechanisms of cell death induced in human B lymphoma cells by the inflammatory oxidants superoxide, H(2)O(2), and HOCl. The results indicate that the mode of cell death induced depends on the nature of the oxidant involved and the medium in which the cells are treated. When human Burkitt's lymphoma cells are exposed to superoxide anion, generated as a flux from xanthine and xanthine oxidase, the cells die by a non-apoptotic mechanism (pyknosis/necrosis) identical to that seen when cells are treated with a bolus of reagent H(2)O(2). Addition of superoxide dismutase has no effect, whereas catalase is completely protective, indicating that exogenously generated superoxide kills cells entirely through its dismutation into H(2)O(2). In contrast, cells treated in culture media with reagent HOCl die largely by apoptosis. HOCl-induced apoptosis is mediated by aminoacyl chloramines generated in the culture media and can be mimicked by treatment of cells with taurine chloramine or with long lived chloramines generated from modified Lys or Arg. The results suggest that in a physiological milieu in which O(2)(-) and H(2)O(2) are the main oxidants being formed, the principal form of cell death may be necrotic, and under inflammatory conditions in which HOCl is generated, apoptotic cell death may predominate.  相似文献   

17.
Myeloperoxidase induces apoptosis in src- or raxs-transformed fibroblasts, but not in parental nontransformed fibroblasts. This selectivity seems to be based on superoxide anion production by transformed cells, a recently described characteristic feature of transformed cells. Myeloperoxidase-mediated apoptosis induction is inhibited by SOD, catalase, 4-aminobenzoyl hydrazide, taurine and DMSO. This pattern of inhibition allows us to conclude that transformed cell derived superoxide anions dismutate to hydrogen peroxide, which fosters HOCl formation by myeloperoxidase. Hydrogen peroxide formation thereby is the rate-limiting step and depends on the cell density. In a second step, HOCl interacts with superoxide anions to yield the highly reactive apoptosis inducing hydroxyl radical. This conclusion was verified through selective apoptosis induction in transformed cells by direct addition of HOCl, which was also inhibited by SOD and DMSO. Our findings demonstrate a specific interplay between target cell derived superoxide anions and MPO during selective apoptosis induction.  相似文献   

18.
Phagocytes generate superoxide (O2-.) and hydrogen peroxide (H2O2) and their interaction in an iron-catalyzed reaction to form hydroxyl radicals (OH.) (Haber-Weiss reaction) has been proposed. Deferoxamine chelates iron in a catalytically inactive form, and thus inhibition by deferoxamine has been employed as evidence for the involvement of OH. generated by the Haber-Weiss reaction. We report here that deferoxamine also inhibits reactions catalyzed by the peroxidases of phagocytes, i.e., myeloperoxidase (MPO) and eosinophil peroxidase (EPO). The reactions inhibited include iodination in the presence and absence of chloride and the oxidation of guaiacol. Iodination by MPO and H2O2 is stimulated by chloride due to the intermediate formation of hypochlorous acid (HOCl). Iodination by reagent HOCl also is inhibited by deferoxamine with the associated consumption of HOCl. Iron saturation of deferoxamine significantly decreased but did not abolish its inhibitory effect on iodination by MPO + H2O2 or HOCl. Deferoxamine did not affect the absorption spectrum of MPO, suggesting that it does not react with or remove the heme iron. The conversion of MPO to Compound II by H2O2 was not seen when H2O2 was added to MPO in the presence of deferoxamine, suggesting either that deferoxamine inhibited the formation of Compound II by acting as an electron donor for MPO Compound I or that deferoxamine immediately reduced the Compound II formed. Iodination by stimulated neutrophils also was inhibited by deferoxamine, suggesting an effect on peroxidase-catalyzed reactions in intact cells. Thus deferoxamine has multiple effects on the formation and activity of phagocyte-derived oxidants and therefore its inhibitory effect on oxidant-dependent damage needs to be interpreted with caution.  相似文献   

19.
Hypochlorous acid (HOCl), the main product of the myeloperoxidase system, is a strong oxidant and a potent chlorinating agent, which can damage host tissues. In the present work, the scavenger effect of three aglycone flavonols (myricetin, quercetin and kaempferol) and of the natural glycoside flavonol, rutin, was studied towards HOCl using luminol-dependent chemiluminescence (CL). At 1 micro mol/L fi nal concentration, rutin was the most powerful scavenger of HOCl with an inhibitory luminol oxidation of 91.4% +/- 3.2%. Quercetin, kaempferol and myricetin inhibited the luminol-dependent CL at the same concentration only by 75.9% +/- 3.4%, 57.7% +/- 5.3% and 43.3% +/- 3.5%, respectively. With increasing concentration of these flavonols, a dose-dependent inhibition of luminol CL was observed. In order to prove to what extent flavonols scavenge HOCl, their concentrations that gave 50% inhibition of luminescence (IC50) were compared to IC50 values of the sulphur-containing compounds N-acetyl cysteine (NAC) and taurine. The scavenging activities of compounds tested decrease in the order: rutin > NAC > quercetin > kaempferol > taurine. The present study revealed that rutin was the most effective scavenger agent.  相似文献   

20.
In the present study, the effects of hypochlorous acid (HOCl), monochloramine (NH(2)Cl), glutamine-chloramine (Glu-Cl) and taurine-chloramine (Tau-Cl) on the formation of 12-lipoxygenase (LOX) metabolite, 12-HETE, and cyclooxygenase (COX) metabolites, TXB(2), and 12-HHT, from exogenous arachidonic acid (AA) in rat platelets were examined. Rat platelets (4x10(8)/ml) were preincubated with drugs for 5min at 37 degrees C prior to the incubation with AA (40microM) for 2min at 37 degrees C. HOCl (50-250microM) showed an inhibition on the formation of LOX metabolite (12-HETE, 5-67% inhibition) and COX metabolites (TXB(2), 33-73% inhibition; 12-HHT, 27-74% inhibition). Although Tau-Cl and Glu-Cl up to 100microM were without effect on the formation of 12-HETE, TXB(2) and 12-HTT, NH(2)Cl showed a strong inhibition on the formation of all three metabolites (10-100microM NH(2)Cl, 12-HETE, 21-92% inhibition; TXB(2), 58-94% inhibition; 12-HHT, 36-92% inhibition). Methionine reversed a reduction of formation of LOX and COX metabolites induced by NH(2)Cl, and taurine restoring that induced by both NH(2)Cl and HOCl. These results suggest that NH(2)Cl is a more potent inhibitor of COX and LOX pathways in platelets than HOCl, and taurine and methionine can be modulators of NH(2)Cl-induced alterations in the COX and LOX pathways in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号