首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key attribute of the stringent response of bacteria is the rapid inhibition of ribosomal RNA synthesis mediated by unusual nucleotides in response to uncharged tRNA. The question as to whether mammalian cells show a stringent response analogous to that of bacteria was critically tested by the effective rapid amino acid starvation of both normal and transformed cells. Rapid starvation giving a high proportion of uncharged tRNA for leucine was produced within 7 minutes of expression of a nonleaky ts leucyl tRNA synthetase mutation in transformed CHO cells (tsH1) and in its normal growth control revertant (L-73). To control for the effect of temperature alone, tsrevertants of tsH1 and L-73 were included in the study, and to control for effects due simply to the inhibition of protein synthesis, the translational elongation inhibitor cycloheximide was used. In addition, rapid starvation for histidine was effected by incubation of both the CHO cell lines and of freshly explanted normal Chinese hamster embryo fibroblasts in histidine-free medium containing high concentrations of histidinol. The rate of preribosomal RNA synthesis and the extent of its maturation to mature rRNA was measured using (3H-methyl) methionine as a donor of methyl groups during synthesis and methylation of pre-rRNA. There was no effect on pre-rRNA synthesis of the rapid generation of uncharged tRNA for 45 minutes for any of the cell types tested. A nonspecific inhibition of maturation of 18S rRNA and late (3 hour) inhibition of pre-rRNA synthesis was observed, but could be mimicked by the inhibition of protein synthesis to comparable levels with cycloheximide. Less severe amino acid starvation resulting in a more physiological inhibition of protein synthesis to 30% also had no specific effect on pre-rRNA synthesis and maturation. Intracellular nucleotide pools were also examined for the appearance of unusual nucleotides such as guanosine tetraphosphate or pentaphosphate and for changes in the levels of normal nucleotides after severe amino acid starvation. No such changes could be detected. We conclude that although mammalian cells may have some biochemical reactions which respond to uncharged tRNA, they do not possess a macromolecular control system analogous to the stringent response of bacteria.  相似文献   

2.
The temperature-sensitive (ts) Chinese hamster ovary (CHO) cell mutant tsH1 contains a thermolabile leucyl-tRNA synthetase. Upon incubation at the nonpermissive temperature of 39.5 degrees C, the enzyme became reversibly inhibited over a period of minutes, and the cells lost viability over a period of many hours. However, killing of tsH1 by acute heating at 45 degrees C was identical to that of wild-type (SC) cells. In addition, the heat-induced inhibition of protein synthesis was similar for both cell types, as measured after acute heating at 45 degrees C. Furthermore, both killing and inhibition of protein synthesis showed thermotolerance in both cell types. In contrast to the effects at 45 degrees C, at 39.5 degrees C, neither the inhibition of leucyl-tRNA synthetase activity nor the killing of tsH1 expressed thermotolerance. Also, treatment of tsH1 at 39.5 degrees C did not induce thermotolerance to killing at 45 degrees C. The inhibition of leucyl-tRNA synthetase activity in tsH1 at 39.5 degrees C was further distinguished from the 45 degrees C-induced inhibition of protein synthesis in SC cells by a much more rapid reversal of the inhibition of leucyl-tRNA synthetase activity. Also, the rate of reversal of the inhibition of protein synthesis by 45 degrees C in SC cells was decreased by increased heat dose. Such was not true for the 39.5 degrees C inhibition of leucyl-tRNA synthetase activity in tsH1. The data indicate that there exist two distinct types of thermal inhibition--one slowly reversible type which was observed during and after heating at 45 degrees C and both induced and expressed thermotolerance, and a second, rapidly reversible type, which was evident only during heating of tsH1 at 39.5 degrees C and neither induced nor expressed thermotolerance.  相似文献   

3.
Morris, D. W. (University of California, San Diego), and J. A. DeMoss. Role of aminoacyl-transfer ribonucleic acid in the regulation of ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 90:1624-1631. 1965.-A leucine auxotroph of Escherichia coli was examined for its rate of ribonucleic acid (RNA) synthesis and the level of charged leucine-, arginine-, and valine-specific transfer RNA (tRNA) during the exponential growth period and when growth was limited by leucine starvation. During the logarithmic growth period, the leucine-specific tRNA was 70% charged, arginine-specific tRNA was 30% charged, and the valine-specific tRNA was 80% charged. When leucine became limiting, RNA synthesis was inhibited and the levels of charged arginine- and valine-specific tRNA remained constant, whereas the level of charged leucine-specific tRNA dropped to 40%. Examination of the leucyl-tRNA during the leucine starvation period showed that this 40% level is maintained by protein turnover. Addition of chloramphenicol or puromycin to a leucine-starved culture derepressed RNA synthesis. In the presence of chloramphenicol, the leucine-specific tRNA was fully charged; however, in the presence of puromycin the amount of charged leucine-specific tRNA remained at the starved level. Therefore, during leucine starvation the level of uncharged leucine-specific tRNA is not invariably correlated with the rate of RNA synthesis. We propose that it is the availability of charged tRNA and not the amount of uncharged tRNA which is the important factor in the amino acid control of RNA synthesis.  相似文献   

4.
5.
We introduced into a stringent Escherichia coli tryptophan auxotroph a plasmid bearing the tRNA(Trp) gene under the control of an inducible promoter. This allows us to manipulate the total concentration of tRNA(Trp) in the cell according to whether and when inducer is added to the culture. We also manipulated the concentration of Trp-tRNA(Trp) in vivo since the strain used bears a mutation in the Trp-tRNA synthetase affecting the Km for tryptophan, such that varying the exogenous concentration of tryptophan led to variation in the level of Trp-tRNA(Trp) in the cell. With this system, we found that the signal eliciting ppGpp synthesis during a stringent response triggered by tryptophan limitation did not depend on the absolute concentration of either charged or uncharged tRNA(Trp) but rather depended on a decline in the ratio of charged/uncharged tRNA(Trp). In addition, we found that the amplitude of the response, once triggered by tryptophan limitation, was determined by the total concentration of tRNA(Trp) present in the cell (which is mostly uncharged at that point in time). However, excess uncharged tRNA(Trp) did not amplify ppGpp synthesis triggered by limitation of a different amino acid. These data provide in vivo support for the in vitro-derived model of ppGpp synthesis on ribosomes.  相似文献   

6.
Previous studies on the synthesis and function of the protein synthetic machinery through the growth cycle of normal cultured hamster embryo fibroblasts (HA) were extended here to a series of four different clonal lines of polyoma virus-transformed HA cells. Under our culture conditions, these transformed cells could enter a stationary phase characterized by no mitotic cells, very low rates of DNA synthesis, and arrest in a post-mitotic pre-DNA synthetic state. Cellular viability was initially high in stationary phase but, unlike normal cells, transformed cells slowly lost viability. The rate of protein synthesis in the stationary phase of the transformed cells fell to 25-30% of the exponential rate. Though this reduction was similar to that seen in normal cells, it was accomplished by different means. The specific reduction in the ribosome complement per cell to values below that of any cycling cell seen in normal cells, was not seen in any of the transformed lines. This observation, which implies a loss of normal control of ribisome synthesis through the growth cycle after transformation, was confirmed in normal Chinese hamster embryo fibroblasts and transformed CHO cell lines. Normal control of ribosome synthesis was restored in L-73 and LR-73, growth control revertants of one of the transformed CHO lines. The transformed lines reduced their protein synthetic rates in stationary phase either by a greater reduction in the proportion of functioning ribosomes than that seen in normal cells or by a decrease in the elongation rate of functioning ribosomes; the latter effect was not seen in the normal cells. A model for growth control of normal cells and its derangement in transformed cells is presented.  相似文献   

7.
This paper describes the regulation of a transfer ribonucleic acid (tRNA) biosynthetic enzyme, the tRNA(m5U)methyltransferase (EC 2.1.1.35). This enzyme catalyzes the formation of 5-methyluridine (m5U, ribothymidine) in all tRNA chains of Escherichia coli. Partial deprivation of charged tRNAVal can be imposed by shifting strains carrying a temperature-sensitive valyl-tRNA ligase from a permissive to a semipermissive temperature. By using two such strains differing only in the allelic state of the relA gene, it was possible to show the tRNA(m5U)methyltransferase to be stringently regulated. Upon partial deprivation of charged tRNAVal, the differential rate of tRNA(m5U)methyltransferase synthesis was found to decrease in a strain with stringent RNA control (relA+), whereas it increased in the strain carrying the relA allele. This increase of accumulation of tRNA(m5U)methyltransferase activity required protein synthesis. Thus, when tRNA is partially uncharged in the cell, the relA gene product influences the expression of tRNA(m5U)methyltransferase gene.  相似文献   

8.
Disruption of the dystrophin-glycoprotein complex caused by genetic defects of dystrophin or sarcoglycans results in muscular dystrophy and/or cardiomyopathy in humans and animal models. However, the key early molecular events leading to myocyte degeneration remain elusive. Here, we observed that the growth factor-regulated channel (GRC), which belongs to the transient receptor potential channel family, is elevated in the sarcolemma of skeletal and/or cardiac muscle in dystrophic human patients and animal models deficient in dystrophin or delta-sarcoglycan. However, total cell GRC does not differ markedly between normal and dystrophic muscles. Analysis of the properties of myotubes prepared from delta-sarcoglycan-deficient BIO14.6 hamsters revealed that GRC is activated in response to myocyte stretch and is responsible for enhanced Ca2+ influx and resultant cell damage as measured by creatine phosphokinase efflux. We found that cell stretch increases GRC translocation to the sarcolemma, which requires entry of external Ca2+. Consistent with these findings, cardiac-specific expression of GRC in a transgenic mouse model produced cardiomyopathy due to Ca2+ overloading, with disease expression roughly parallel to sarcolemmal GRC levels. The results suggest that GRC is a key player in the pathogenesis of myocyte degeneration caused by dystrophin-glycoprotein complex disruption.  相似文献   

9.
K. A. Hudak  J. M. Lopes    S. A. Henry 《Genetics》1994,136(2):475-483
Three mutants were identified in a genetic screen using an INO1-lacZ fusion to detect altered INO1 regulation in Saccharomyces cerevisiae. These strains harbor mutations that render the cell unable to fully repress expression of INO1, the structural gene for inositol-1-phosphate synthase. The Cpe(-) (constitutive phospholipid gene expression) phenotype associated with these mutations segregated 2:2, indicating that it was the result of a single gene mutation. The mutations were shown to be recessive and allelic. A strain carrying the tightest of the three alleles was examined in detail and was found to express the set of co-regulated phospholipid structural genes (INO1, CHO1, CHO2 and OPI3) constitutively. The Cpe(-) mutants also exhibited a pleiotropic defect in sporulation. The mutations were mapped to the right arm of chromosome XV, close to the centromere, where it was discovered that they were allelic to the previously identified regulatory mutation sin3 (sdi1, ume4, rpd1, gam2). A sin3 null mutation failed to complement the mutation conferring the Cpe(-) phenotype. A mutant harboring a sin3 null allele exhibited the same altered INO1 expression pattern observed in strains carrying the Cpe(-) mutations isolated in this study.  相似文献   

10.
The temperature-sensitive Chinese hamster ovary cell mutant tsH1, has been shown previously to contain a temperature-sensitive leucyl-tRNA synthetase. At the non-permissive temperature of 40 degrees C cytosolic protein synthesis is rapidly inhibited. The protein synthesis which continues at 40 degrees C appears to be mitochondrial, since: (a) whole-cell protein synthesis at the permissive temperature of 34 degrees C is not inhibied by tevenel, the sulfamoyl analogue of chloramphenicol and a specific inhibitor of mitochondrial protein synthesis; however, whole-cell protein synthesis at 40 degrees C is inhibited by tevenel, (b) Protein synthesis by isolated mitochondria from tsH1 cells is not significantly inhibited at 40 degrees C. (c) At 40 degrees C [14C]leucine is incorporated predominantly into the mitochondrial fraction of tsH1 cells. (d) The incorporation of [14C]leucine at 40 degrees C into mitochondrial proteins of tsH1 cells is inh-bited by tevenel but not by cycloheximide. These results suggest that the mitochondria of tsH1 cells contain a leucyl-tRNA synthetase which is different from the cytosolic enzyme. The inhibition of cytosolic, but not of mitochondrial protein synthesis in tsH1 cells at 40 degrees C allows the selective labelling of mitochondrial translation products in the absence of inhibitors. The mitochondrial translation products labelled in tsH1 cells at 40 degrees C and at 34 degrees C in the presence of cycloheximide have been compared by sodium dodecylsulphate-polyacrylamide gel electrophoresis. Both conditions of labelling give similar profiles. The mitochondrial translation products are resolved into two components, one with an apparent molecular weight range from 40,000 to 20,000 and a second with an apparent molecular weight range from 20,000 to 10,000.  相似文献   

11.
R. H. Davis  P. Lieu    J. L. Ristow 《Genetics》1994,138(3):649-655
Polyamines (spermidine and spermine) are required by living cells, but their functions are poorly understood. Mutants of Neurospora crassa with enhanced or diminished sensitivity to interference with polyamine synthesis, originally selected to study the regulation of the pathway, were found to have unexpected defects. A group of four non-allelic mutations, causing no interference with polyamine synthesis, each imparted spermidine auxotrophy to a genotype already partially impaired in spermidine synthesis. Strains carrying only the new mutations displayed unconditional delay or weakness at the onset of growth, but grew well thereafter and had a normal or overly active polyamine pathway. These mutants may have defects in vital macromolecular activities that are especially dependent upon the polyamines-activities that have not been identified with certainty in studies to date. Another group of mutants, selected as resistant to the polyamine inhibitor difluoromethylornithine (DFMO), had normal activity and regulation of ornithine decarboxylase, the target of the drug. All but one of thirty mutants were allelic, and were specifically deficient in the basic amino acid permease. This mechanism of DFMO resistance is unprecedented among the many DFMO-resistant cell types of other organisms and demonstrates that DFMO can be used for efficient genetic studies of this transport locus in N. crassa.  相似文献   

12.
A retroviral vector system for the expression of exogenous genes under the control of an inducible promoter was developed. By utilizing this system, the cDNA for human transforming growth factor beta 1 (TGF-beta 1) was inserted into a retroviral vector under the control of an internal mouse metallothionein promoter and introduced via infection into normal rat kidney fibroblasts (NRK-49F) and epithelial cells (NRK-52E), Chinese hamster ovary cells (CHO), and the human monocytic cell line U937. Control of TGF-beta 1 expression, achieved by Cd2+ induction of vector-encoded TGF-beta 1 mRNA, was cell line specific and resulted in a concomitant increase in neutralizable TGF-beta 1 production by the cells. Autocrine stimulation of vector-containing cells by vector-encoded TGF-beta 1 was detected by an increase in soft-agar colony formation of NRK-49F infectants compared with that of the control cells. In addition, the use of a second internal promoter in a retroviral vector of similar design allowed isolation of stable infectants from a cell line (CHO) in which the viral long terminal repeat does not function efficiently.  相似文献   

13.
Abstract The relationship between antibiotic production and culture growth rate in Saccharopolyspora erythraea and Streptomyces hygroscopicus was manipulated by changing the growth-limiting substrate. Carbon- and nitrogen-limited cultures were studied and antibiotic synthesis was obtained in both cases in Saccharopolyspora erythraea cultures and in nitrogen-limited Streptomyces hygroscopicus cultures. In all cultures where antibiotic was detected, onset of antibiotic production coincided with the minimal protein synthesis rate. Further investigation in Saccharopolyspora erythraea cultures indicated that this corresponded to minimum ratio of charged to uncharged tRNA, i.e. when uncharged tRNA accumulated. This latter phenomenon was investigated in the presence of a protein synthesis inhibitor.  相似文献   

14.
Experiments were carried out to assess the physiological significance of the charging level of tRNA. Histidinol, a competitve inhibitor of charging of tRNAHis, was used to induce uncharged tRNA in mammalian cells. It is demonstrated that both in the presence of histidinol and under histidine depletion about 40% of the tRNAHis is uncharged. Concomitant with this appearance of uncharged tRNA(a) the pools of GTP and ATP are decreased rapidly by 25--30%; (b) the synthesis of both protein and ribosomal RNA is inhibited, whereas that of nucleoplasmic RNA is not affected; (c) the uptake of 2-deoxyglucose, phosphate, Ca2+; uridine and adenosine is inhibited; and (d) the growth of 3T6 fibroblasts is arrested. It is suggested that the appearence of uncharged tRNA is one of the earliest events occurring under conditions of amino acid starvation, which in turn causes the various metabolic changes observed.  相似文献   

15.
The size distribution of the 20 aminoacyl-tRNA synthetases from wild-type Chinese hamster ovary (CHO) cells and from the mutant cell line tsH1, containing a temperature-sensitive leucyl-tRNA synthetase, was determined by gel filtration. Nine aminoacyl-tRNA synthetases, specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine and proline, which coeluted as high-Mr entities (Mr approximately 1.2 X 10(6)), were further co-purified to yield a multienzyme complex, the polypeptide composition of which was identical to that previously determined for the complex from rabbit liver. Immunoprecipitates obtained from crude extracts of wild-type and tsH1 mutant cells, using specific antibodies directed to the lysyl-tRNA or methionyl-tRNA synthetase components of the complex, displayed the same polypeptide compositions as that of the purified complex, thereby establishing the heterotypic nature of this complex. Although the activity of leucyl-tRNA synthetase from the mutant cells, grown at a permissive temperature, was low compared to that from the wild-type, the polypeptide of Mr 129 000, corresponding to this enzyme, was present in similar amounts and occurred exclusively as a component of the high-Mr complex. Finally, we report that attempts to demonstrate phosphorylation of the components of the complex from cultured CHO, HeLa and C3 cells were unsuccessful.  相似文献   

16.
D. B. Garrity  S. A. Zahler 《Genetics》1994,137(3):627-636
It has been proposed that uncharged tRNA molecules may act as positive regulatory factors to control the expression of a number of operons in Bacillus subtilis and related bacteria by interacting with leader sequences to cause antitermination. In this study we report the isolation and characterization of regulatory mutations that modify one of the tRNA molecules predicted to have such a regulatory role. Three different alleles of the B. subtilis leucine tRNA gene leuG were found that resulted in higher expression of the ilv-leu biosynthetic operon. Each resulted in a base change in the D-loop of the leucine tRNA molecule with the anticodon 5''-GAG-3'' (leucine tRNA(GAG)). Experiments with strains that are diploid for mutant and wild-type alleles suggested that both charged and uncharged tRNA molecules may interact with leader sequences to control expression of the operon.  相似文献   

17.
We have used the technique of somatic cell hybridization to study the regulation of the neutral amino acid transport system L in Chinese hamster ovary (CHO) cells. The cell line CHO–;tsO25C1 has a temperature-sinsitive mutationin leucyl-tRNA synthetase. At the nonpermissive temperature of 39oC, CHO–tsO25C1 cells are unable to charge leucyl-tRNA and behave as though starved for leucine by increasing their system L transport activity two- to fourfold. From the temperature-sensitive cell line, we have isolated a regulatory mutant cell, CHO–C11B6, that has constitutively elevated system L transport activity. The CHO–C11B6 cell line retains the temperature-sensitive leucyl-tRNA synthetase mutation, but growth of this cell line is temperature resistant because its increased system L transport activity leads of increased intracellular leucine levels, which compensate for the defective. Hybrid cells formed by fusion of the temperature-sensitive CHO–;tsO25C1 cells the temperature-resistant CHO–C11B6 cells show temperature-sensitive growth and temperature-dependent regulation of leucine transport activity. These data suggest that the system L activity of CHO cells is regulated by a dominant-acting element that is defective or absent in the regulatory mutant CHO–C11B6 cell line.  相似文献   

18.
W R Jones  G J Barcak    R E Wolf  Jr 《Journal of bacteriology》1990,172(3):1197-1205
In Escherichia coli, the level of 6-phosphogluconate dehydrogenase is directly proportional to the cellular growth rate during growth in minimal media. This contrasts with the report by Winkler et al. (M. E. Winkler, J. R. Roth, and P. E. Hartman, J. Bacteriol. 133:830-843, 1978) that the level of the enzyme in Salmonella typhimurium LT-2 strain SB3436 is invariant. The basis for the difference in the growth-rate-dependent regulation between the two genera was investigated. Expression of gnd, which encodes 6-phosphogluconate dehydrogenase, was growth rate uninducible in strain SB3436, as reported previously, but it was 1.4-fold growth rate inducible in other S. typhimurium LT-2 strains, e.g., SA535. Both the SB3436 and SA535 gnd genes were growth rate inducible in E. coli K-12. Moreover, the nucleotide sequences of the regulatory regions of the two S. typhimurium genes were identical. We concluded that a mutation unlinked to gnd is responsible for the altered growth rate inducibility of 6-phosphogluconate dehydrogenase in strain SB3436. Transductional analysis showed that the altered regulation is due to the presence of a mutation in hisT, the gene for the tRNA modification enzyme pseudouridine synthetase I. A complementation test showed that the regulatory defect conferred by the hisT mutation was recessive. In E. coli, hisT mutations reduced the extent of growth rate induction by the same factor as in S. typhimurium. The altered regulation conferred by hisT mutations was not simply due to their general effect of reducing the polypeptide chain elongation rate, because miaA mutants, which lack another tRNA modification and have a similarity reduced chain growth rate, had higher rather than lower 6-phosphogluconate dehydrogenase levels. Studies with genetic fusions suggested that hisT mutations lower the gnd mRNA level. The data also indicated that hisT is involved in translational control of gnd expression, but not the aspect mediated by the internal complementary sequence.  相似文献   

19.
R Little  J Ryals    H Bremer 《Journal of bacteriology》1983,155(3):1162-1170
We have previously reported the isolation of Escherichia coli rpoB mutants in which the control of ribosome synthesis by the nucleotide effector guanosine tetraphosphate (ppGpp) is altered, owing to a 20-fold increased sensitivity of the mutant RNA polymerases to ppGpp. In these mutants, the level of ppGpp during exponential growth is decreased about 10-fold, relative to that of rpoB+ wild-type strains, such that a near normal partitioning of RNA polymerase occurs with respect to stable RNA (rRNA and tRNA) gene activity. Here, the physiological effects of two different rpoB alleles in a relA+ and relA background were analyzed in greater detail by comparison with their isogenic rpoB+ wild-type parents. For a given growth medium, the rpoB mutations were found to affect four parameters which resulted in a reduction of growth rate. The results reinforce a previous conclusion that a key element in control of the bacterial growth rate is a mutual relationship between control of ribosome synthesis by ppGpp and control of relA-independent ppGpp metabolism by the concentration and function of ribosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号