首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromosomal heteromorphisms are described as interindividual variation of chromosomes without phenotypic consequence. Chromosomal polymorphisms detected include most regions of heterochromatin of chromosomes 1, 9, 16 and Y and the short arms of all acrocentric chromosomes. Here, we report a girl with Down-syndrome such as facies and tremendously enlarged short arm of a chromosome 22. Fluorescence in situ hybridization (FISH) with a probe specific for all acrocentric short arms revealed that the enlargement p arms of the chromosome 22 in question contained exclusively heterochromatic material derived from an acrocentric short arm. Parental studies identified a maternal origin of this heteromorphism. Cryptic trisomy 21 of the Down-syndrome critical region was excluded by a corresponding FISH-probe. Here, we report, to the best of our knowledge, largest ever seen chromosome 22 short arm, being ~×1.5 larger than the normal long arm.  相似文献   

2.
Variant chromosomes are polymorphic in areas that are rich in repeat sequences such as the pericentromeric regions or in the acrocentric short arm regions. The dynamic nature of these regions is evident in the polymorphisms they exhibit. In this paper three unusual variants are described: a chromosome 21 with additional material on its short arm, a chromosome 7 with an insertion in the short arm and a chromosome 2 with satellites at the end of the long arm. All three variants were shown to involve acrocentric elements using special banding techniques and fluorescence in situ hybridization. The 21 variant was found to be a tricentric with a 21 and two 15 alpha-, two classical and three acrocentric beta-satellite signals interspersed by AgNOR-positive regions. The telomeres were present at the two terminal ends. The insertion on chromosome 7 was found to be C-band positive and to contain acrocentric beta-satellite DNA. However, acrocentric alpha-satellite, classical satellite, whole-chromosome-painting or all-telomeres sequence probes did not hybridize to the insertion. The satellited region of chromosome 2 had two C-bands, a small positive all-centromeres probe signal, and two signals for the beta-satellite probe. Sandwiched between the beta-satellite sequences was an AgNOR-positive region. The telomeres were present at the two ends of the satellited chromosome 2. Chromosome 2 subtelomeric probes hybridized to the terminal ends of the short and long arm of chromosome 2. The common thread in these three variants is the involvement of acrocentric short arm elements. The acrocentric short arm elements are shown to move to other acrocentric or nonacrocentric chromosomes and relocate to both terminal and interstitial positions. The integrations are stable and heritable. Received: 23 September 1997 / Accepted: 23 February 1998  相似文献   

3.
Summary The presence of DA/DAPI (distamycin A/ 4,6-diamino-2-phenyl-indole) heteromorphism on the short arm of human acrocentric chromosomes was investigated in 127 individuals. In 7 cases, a DA/DAPI signal was observed on an acrocentric chromosome other than 15. Subsequently, in situ hybridization (ISH) with a pericentromeric probe specific for chromosome 15 was carried out. In all 7 cases, three ISH signals were present in every metaphase, i.e., on both chromosomes 15 and on the third DA/DAPI-fluorescence-positive acrocentric chromosome (a chromosome 13 or 14), indicating that a chromosome 15 short arm was also present on these chromosomes. Therefore, we conclude that translocations of short arm sequences from chromosome 15 onto other D-group chromosomes occur frequently. Moreover, it appears that DA/DAPI staining remains specific for the short arm of chromosome 15, despite a number of recent papers suggesting otherwise.  相似文献   

4.
石玉平  马绍武 《遗传学报》1993,20(6):488-492
本文对一便生育过先天愚型儿的个体刊进行了细胞与分子遗传学研究。发现先证者拥有t(14;21)用一个短臂增大变异为15号标记染色体。通过G-显带、C-显带、Q-显带、硝酸银染色及Y染色体长臂异染色质区特异控针pY3.4对先证者基因组DNA的斑点杂交和中期染色体的原位杂交,证实变异部分由Y染色体长臂异染色质区易位所形成,从而排除了巨大随体的存在或其他染色体参与重排形成变的可能性,结果表明,常规显带与染  相似文献   

5.
The pairing behavior of the sex chromosomes in male and female individuals representing seven species of Peromyscus was analyzed by electron microscopy of silver-stained zygotene and pachytene configurations. Six species possess submetacentric or metacentric X chromosomes with heterochromatic short arms. Sex-chromosome pairing in these species is initiated during early pachynema at an interstitial position on the X and Y axes. Homologous synapsis then progresses in a unidirectional fashion towards the telomeres of the X short arm and the corresponding arm of the heterochromatic Y chromosome. The distinctive pattern of synaptic initiation allowed a late-synapsing bivalent in fetal oocytes to be tentatively identified as that of the X chromosomes. In contrast to the other species, Peromyscus megalops possesses an acrocentric X chromosome and a very small Y chromosome. Sex-chromosome pairing in this species is initiated at the proximal telomeric region during late zygonema, and then proceeds interstitially towards the distal end of the Y chromosome. These observations suggest that the presence of X short-arm heterochromatin and corresponding Y heterochromatin interferes with late-zygotene alignment of the pairing initiation sites, thereby delaying XY synaptic initiation until early pachynema. The pairing initiation sites are conserved in the vicinity of the X and Y centromeres in Peromyscus, and consequently the addition of heterochromatin during sex-chromosome evolution essentially displaces these sites to an interstitial position.  相似文献   

6.
A new CMS system designated as ‘msH1’ has been reported in bread wheat using the cytoplasm of H. chilense. While testing this system in different wheat backgrounds, a highly fertile line with chromosome number 42 plus an extra acrocentric chromosome was obtained. The extra chromosome did not pair with any wheat chromosome at meiosis, and progeny from this line which lack the acrocentric chromosome showed pollen abortion and male sterility. In order to establish the origin of this chromosome, FISH using H. chilense genomic DNA as probe was used and showed that it had originated from H. chilense chromosome(s). The novel chromosome did not possess sequences similar to wheat rDNA; however, the probe pSc119.2 from S. cereale containing the 120 bp family was found to occur at the end of its long arm. Data obtained from FISH and EST molecular markers confirm that the long arm of the acrocentric chromosome is indeed, the short arm of chromosome 1Hch from H. chilense. We suggest that the novel chromosome originated from a deletion of the distal part of the long arm of chromosome 1Hch. Neither the 1HchS short arm, nor the whole chromosome 1Hch restores pollen fertility of the alloplasmic wheat. Therefore, the restorer gene on the acrocentric chromosome must be located on the retained segment from the hypothetical 1HchL, while some pollen fertility inhibitor could be present on the deleted 1HchL distal segment. Disomic addition of the acrocentric chromosome was obtained and this line resulted fully stable and fertile.  相似文献   

7.
The 5S ribosomal RNA genes were mapped to mitotic chromosomes of Arabidopsis thaliana by fluorescence in situ hybridization (FISH). In the ecotype Landsberg erecta, hybridization signals appeared on three pairs of chromosomes, two of which were metacentric and the other acrocentric. Hybridization signals on one pair of metacentric chromosomes were much stronger than those on the acrocentric and the other pair of metacentric chromosomes, probably reflecting the number of copies of the genes on the chromosomes. Other ecotypes, Columbia and Wassilewskija, had similar chromosomal distribution of the genes, but the hybridization signals on one pair of metacentric chromosomes were very weak, and detectable only in chromosomes prepared from young flower buds. The chromosomes and arms carrying the 5S rDNA were identified by multi-color FISH with cosmid clones and a centromeric 180 bp repeat as co-probes. The metacentric chromosome 5 and its L arm carries the largest cluster of the genes, and the short arm of acrocentric chromosome 4 carries a small cluster in all three ecotypes. Chromosome 3 had another small cluster of 5S rRNA genes on its L arm. Chromosomes 1 and 2 had no 5S rDNA cluster, but they are morphologically distinguishable; chromosome 1 is metacentric and 2 acrocentric. Using the 5S rDNA as a probe, therefore, all chromosomes of A. thaliana could be identified by FISH. Chromosome 1 is large and metacentric; chromosome 2 is acrocentric carrying 18S-5.8S-25S rDNA clusters on its short arm; chromosome 3 is metacentric carrying a small cluster of 5S rDNA genes on its L arm; chromosome 4 is acrocentric carrying both 18S-5.8S-25S and 5S rDNAs on its short (L) arm; and chromosome 5 is metacentric carrying a large cluster of 5S rDNA on its L arm.  相似文献   

8.
Summary Three 45,X males have been studied with Y-DNA probes by Southern blotting and in situ hybridization. Southern blotting studies with a panel of mapped Y-DNA probes showed that in all three individuals contiguous portions of the Y chromosome including all of the short arm, the centromere, and part of the euchromatic portion of the long arm were present. The breakpoint was different in each case. The individual with the largest portion (intervals 1–6) is a fertile male belonging to a family in which the translocation is inherited in four generations. The second adult patient, who has intervals 1–5, is an azoospermic, sterile male. These phenotypic findings suggest the existence of a gene involved in spermatogenesis in interval 6 in distal Yq11. The third case, a boy with penoscrotal hypospadias, has intervals 1–4B. In situ hybridization with the pseudoautosomal probe pDP230 and the Y chromosome specific probe pDP105 showed that Y-derived DNA was translocated onto the short arm of a chromosome 15, 14, and 14, respectively. One of the patients was a mosaic for the 14p+ translocation chromosome. Our data and those reported by others suggest the following conclusions based on molecular studies in eight 45,X males: The predominant aetiological factor is Y;autosome translocation observed in seven of the eight cases. As the remaining case was a low-grade mosaic involving a normal Y chromosome, the maleness in all cases was due to the effect of the testis determing factor, TDF. There is preferential involvement of the short arm of an acrocentric chromosome (five out of seven translocations) but other autosomal regions can also be involved. The reason why one of the derivative translocation chromosomes becomes lost may be that it has no centromere.  相似文献   

9.
10.
G- and C-banded karyotypes of the two extant species of the mammalian order Proboscidea are presented for the first time. Chromosome complements were 2n = 56 in both Loxodonta africana and Elephas maximus. Comparisons between the species demonstrated a high level of chromosome band homology, with 26 conserved autosomal pairs. The normal diploid karyotype of L. africana had 25 acrocentric/telocentric and two metacentric/submetacentric autosomal pairs. E. maximus differed by having one less acrocentric and one additional submetacentric pair due to either a heterochromatic arm addition or deletion involving autosomal pair 27. Several acrocentric autosomes of L. africana exhibited small short arms that were absent in homologous chromosomes of E. maximus. The X chromosomes in both species were large submetacentric elements and were homologous. However, the small acrocentric Y chromosomes differed; in E. maximus it was slightly larger and had more distinct G-bands than its counterpart in L. africana. Extant Elephantidae appear to be relatively conservative in their rates of chromosomal change compared to some other mammalian families. The high-quality banded karyotypes presented here should prove useful as references in future chromosome analyses of elephant populations and in comparative cytogenetic studies with other ungulate orders.  相似文献   

11.
Cytogenetic studies on a phenotypically normal male, presenting with infertility, revealed a balanced Y;19 translocation - 46,XY,t (Y;19) (q11; p or q13). The patient had a normal hormone profile, but semen analysis showed immature cells in the fluid. The possible mechanisms causing the infertility are discussed. An extensive review of the literature of Y ; autosome translocations indicates that there are 2 types, those in which the broken segment of the Y is translocated to the short arm or centromeric region of an acrocentric chromosome, and those in which the Y material is translocated onto a long or short arm region of a non-acrocentric chromosome. The first type is less frequently associated with infertility and hypogonadism than the second type. There is presumptive evidence that the first type is non-random.  相似文献   

12.
The genus Nothoscordum Kunth comprises approximately 20 species native to South America. Karyologically, the genus is remarkable for its large chromosomes and Robertsonian translocations. Variation in chromosome number has been recorded in a few polyploid species and it is unknown among diploids. This study presents the chromosome number and morphology of 53 individuals of seven populations of N. arenarium Herter (2n = 10). In addition, karyotype analyses after C-banding, staining with CMA and DAPI, and in situ hybridization with 5S and 45S rDNA probes were performed in six individuals from one population. All individuals exhibited 2n = 10 (6M + 4A), except for one tetraploid (2n = 20, 12M + 8A) and one triploid (2n = 15, 9M + 6A) plant. C-banding revealed the presence of CMA(+) /DAPI (-) heterochromatin in the short arm and in the proximal region of the long arm of all acrocentric chromosomes. The 45S rDNA sites co-localized with the CMA (+) regions of the acrocentrics short arms, while the 5S rDNA probe only hybridized with the subterminal region of a pair of metacentric chromosomes. A change in the pattern of CMA bands and rDNA sites was observed in only one individual bearing a reciprocal translocation involving the long arm of a metacentric and the long arm of an acrocentric chromosome. These data suggest that, despite isolated cases of polyploidy and translocation, the karyotype of N. arenarium is very stable and the karyotypic instability described for other species may be associated with their polyploid condition.  相似文献   

13.
Cytogenetic methods and molecular probes derived from the centromere and short arm of chromosome 14 were used to investigate the structural properties of a chromosome 14 variant. Results of GTL, CBG, Ag-NOR, and non-banded Giemsa staining of the chromosomes suggested the complete absence of the short arm and possibly a large part of the centromere. Negative in situ hybridisation with an alpha satellite III probe confirmed the absence of the arm; the detection of normal amounts of alpha satellite DNA, however, indicated retention of the centromeric domain. The natural occurrence of a human acrocentric variant lacking a short arm was thus established. Within the detection limits of the methods used, the results demonstrate that satellite III DNA is not essential for normal centromeric activity and allow us to exclude the presence of this satellite DNA within the centromere and proximal long-arm region of human chromosome 14.  相似文献   

14.
Three male-specific PCR products of the sequences BC1.2, lambda ES6.0, and BRY.1 were used as probes for Southern blot analyses. Each of these probes generated a complex male-specific band pattern, which showed some quantitative variations among bulls. Hybridization patterns obtained with the BC1.2 and lambda ES6.0 PCR products were interrelated. Chromosomal locations of these repeats were determined by hybridizing the tritiated PCR products in situ to male metaphase spreads. The BC1.2 and lambda ES6.0 PCR products hybridized to Yp13-->p12, whereas the BRY.1 PCR product hybridized over the entire Y chromosome. In addition, the BC1.2 and lambda ES6.0 PCR products hybridized to the distal half of the acrocentric Y chromosome of Bos indicus, indicating that the short arm of the B. taurus Y chromosome is homologous with the telomeric end of the B. indicus Y and supporting the notion that the Y chromosomes of these two species differ by a pericentric inversion.  相似文献   

15.
Diprion pini belongs to a small family of sawflies with n = 7 as the modal chromosome number. This species has 14 acrocentric chromosomes and one carries a satellite. In situ hybridization to mitotic chromosomes of a Drosophila rDNA probe was carried out according to two protocols. The biotinylated probe was detected with peroxidase-conjugated extravidin and diaminobenzidine or with fluorescein-conjugated extravidin (FISH). These two techniques showed that only one chromosome per haploid complement responds to the probe used. The centric fission hypothesis is consequently more likely than polyploidization in order to explain the chromosome number doubling in D. pini. The sites of probe hybridization are located on the satellite and its carrier short arm, which are heterochromatin-rich. The propensity of rDNA and heterochromatin for self duplication and accretion most likely created the satellite and the short arms. This process is also known to be one of the mechanisms by which extra segments may arise.  相似文献   

16.
Chondrodysplasia punctata with X;Y translocation   总被引:6,自引:2,他引:4  
Summary We have studied a family in which the mother and her son were carriers of an X;Y translocation, der(X)t(X;Y) (p22.3;q11). The mother was of slightly short stature and had mildly short upper extremities. The son had epiphyseal punctate calcifications, mildly short extremities, a flattened nasal bridge, and mental retardation (chondrodysplasia punctata). The extra bands on the short arm of the X chromosome were identified as deriving from the long arm of the Y chromosome, using in situ hybridization with a Y-chromosome-specific DNA probe (pHY10). The chondrodysplasia punctata seen in our case may be associated with the abnormality of the distal short arm of the X chromosome caused by X;Y translocation.  相似文献   

17.
A new chromosome banding technique, distamycin A plus DAPI, has been used to reexamine cases of presumed Y/autosome translocations. In contrast with the results obtained with quinacrine fluorescence (Q-banding), the satellites of acrocentric chromosomes do not fluoresce brightly with this new (DA-DAPI) method, making it more specific for the long arm of the Y chromosome. Previous cases with intensely Q-fluorescent and abnormally long short arms on a chromosome 22 were considered as presumptive 22/Y translocations: The new technique clearly shows that, in these cases, the additional material on 22p is not derived from Yq. In contrast, in other cases the Yq nature of additional material on 15p, in conjunction with the presence of an extra Y-body in interphase nuclei and the presence of a male-specific DNA, supports the previous diagnosis of a presumptive 15/Y translocation.  相似文献   

18.
19.
Summary Chromosome studies were carried out on normal individuals from three generations of one family with a 14p+ chromosome. The short arm of the 14p+ chromosome stained well using Giemsa but poorly using quinacrine or trypsin-Giemsa methods; in each case there was an unstained secondary constriction near the distal end of the short arm. Two Ag bands of average size were present on the 14p+ short arm, indicating that there were two active nucleolus organizer regions; the Ag band near the distal end of the short arm was slightly larger than that near the centromere. Each of the two Ag bands was seen associated with the short arm of one or more of the other acrocentric chromosomes, with a combined frequency of association no greater than that of other chromosomes with an Ag band of the same size. In one individual, hybridization in situ with radioactive 18S and 28S ribosomal RNA showed six times as many autoradiographic silver grains over the short arm of the 14p+ chromosome as over that of any other acrocentric chromosome. The results obtained using in situ labeling indicated that the 14p+ chromosome had a large number of rRNA genes compared with the other acrocentric chromosomes, whereas the results obtained using Ag-staining and association frequency indicated that the 14p+ chromosome had no greater nucleolus organizer activity than did the other acrocentrics. The difference in these findings suggests that not all the rRNA genes on the 14p+ chromosome were active.  相似文献   

20.
Fifty chromosomally normal couples with three or more miscarriages were examined using fluorescent in situ hybridisation (FISH) and a library of subtelomere-specific probes together with alphoid repeats mapping to the acrocentric centromeres. Six abnormalities were found. Firstly, a cryptic reciprocal subtelomere translocation between the long arm of a chromosome 3 and the short arm of a chromosome 10. The other five cryptic abnormalities involved the acrocentric chromosome pericentromeric regions and in one case also Yp. Two patients had a rearranged chromosome 13, where the centromeric region was found to be derived from the short arm, centromere and proximal long arm of chromosome 15. Another two patients had a derived chromosome 22, where the centromere was replaced by two other centromeres, one derived from chromosome 14 and the other from either chromosome 13 or 21, while one patient had the subtelomere region of Yp translocated onto the short arm of a chromosome 21. These abnormalities may be the underlying cause of the recurrent miscarriages, because they may result in abnormal pairing configurations at meiosis leading to non-disjunction of whole chromosomes at metaphase I. The frequency of rearrangements seen in the recurrent miscarriage patient population was significantly different from that in the control group ( P=0.0096, Fisher's exact test) due to the acrocentric pericentromeric abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号