首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a cognitive set to emotional facial expression as a model, induced synchronization/desynchronization of the cortical theta- and alpha-activities were studied in adult healthy people under conditions of increased load on the working memory (additional task of the verbal stimuli recognition). A correlation was found between behavioral (increase in the set rigidity) and electrophysiological (decrease of the induced theta-rhythm synchronization) data. A hypothesis is suggested that the earlier revealed increase in the tonic prestimulus theta-activity and suppression of the poststimulus phasic activation of the cortico-hippocampal system are one of the mechanisms of the decrease in plasticity of the cognitive function of the emotional facial expression recognition under conditions of the increased load on the working memory. Reciprocal relations between two functional systems of the brain activity integration (cortico-hippocampal and fronto-thalamic) in the process of recognition of emotional facial expression are discussed.  相似文献   

2.
Coherence function of the EEG in the bands of 8-13 (alpha rhythm) and 14-25 Hz (beta rhythm) was analyzed in 35 healthy adult subjects during formation and testing of a visual cognitive set to pictures of faces with different emotional expressions. The intra- and interhemispheric coherences of the potentials in the frontal area and coherence between the right frontal and temporal derivation were shown to increase at the stage of set actualization. The results of the analysis confirm the suggestion that the frontal cortical areas are predominantly involved in formation and actualization of the set to facial emotional expression. The conclusion is based on the idea that the spatial synchronization of the brain electrical potentials is an index of the functional relations between the corresponding cortical areas and their cooperative involvement in a certain kind of activity (their simultaneous activation).  相似文献   

3.
Analysis of coherence of cortical electric activity performed in 30 healthy subjects revealed changes in the spatial organization of cortical electric activity after listening the instruction, i.e., loading the explicit working memory with a sequence of operations of the cognitive task to be solved in the course of the experiment. Comparison of instructions presenting several cognitive tasks showed that greater load of the working memory is associated with higher coherence of cortical activity, especially, in the parietotemporal and occipital areas.  相似文献   

4.
Renart A  Song P  Wang XJ 《Neuron》2003,38(3):473-485
The concept of bell-shaped persistent neural activity represents a cornerstone of the theory for the internal representation of analog quantities, such as spatial location or head direction. Previous models, however, relied on the unrealistic assumption of network homogeneity. We investigate this issue in a network model where fine tuning of parameters is destroyed by heterogeneities in cellular and synaptic properties. Heterogeneities result in the loss of stored spatial information in a few seconds. Accurate encoding is recovered when a homeostatic mechanism scales the excitatory synapses to each cell to compensate for the heterogeneity in cellular excitability and synaptic inputs. Moreover, the more realistic model produces a wide diversity of tuning curves, as commonly observed in recordings from prefrontal neurons. We conclude that recurrent attractor networks in conjunction with appropriate homeostatic mechanisms provide a robust, biologically plausible theoretical framework for understanding the neural circuit basis of spatial working memory.  相似文献   

5.
6.
Stability of the cognitive set to nonsense words in healthy adult subjects was compared in two experimental conditions: (1) subjects had only to recognize pseudowords/words; (2) in each trial after the pseudoword/word recognition, subjects had to press a button in response to a visual probe stimulus and only after this action to pronounce a recognized pseudoword/word. It was shown that complication of the cognitive performance in the second condition did not affect the set rigidity. However, the pattern of the cortical electric activity substantially changed: the EEG power in the theta frequency range and coherence function, in particular, interhemispheric, in the frontal cortical areas were higher in the second condition. The increase in coherence function in the frontal areas was most pronounced in the theta and alphal ranges. It was suggested that increase in activity of the frontal regions of the brain cortex facilitates shifts of visual sets under increasing load of the working memory.  相似文献   

7.
8.
9.
The hypothesis of a predominance of the right hemisphere in stage REM as compared to NREM has been tested through a spectral analysis of the EEG recorded from left (T3) and right (T4) temporal sites in 5 young healthy right-handed male subjects. Variations in the asymmetry coefficient R - L/R + L in different sleep stages have been analyzed by one way ANOVAs and Sheffé's tests. The hypothesis of a progressive increase in left hemisphere activity throughout different REM cycles as one approaches final awakenings have been investigated by comparing variations in the asymmetry coefficient for epochs of REM and stage 2 NREM sampled in different phases of the REM cycle. EEG results do not support either the hypothesized stage dependent or cycle dependent variation in EEG activity during sleep. We question whether variations in EEG amplitude and synchronization can be used as indices of hemispheric asymmetries during sleep.  相似文献   

10.
11.
ABSTRACT. Electrical activity from individual mandibular closer muscle fibres of the desert locust Schistocerca gregaria was monitored during three feeding conditions: chewing soft grass, chewing soft grass against an artificial load, and chewing an incompressible grass. Spiking frequency during bursts of activity was found to increase under conditions of increased artificial, and natural load. These increases in spiking frequency occurred over a frequency range much lower than that necessary to produce a maximal tetanic contraction, and therefore correspond to increases in power output by the closer muscles in response to increases in load. A possible mechanism for this is described.  相似文献   

12.
13.
In the present study the influence of the level of consciousness on spatial organization of the cortical functional activity in human psychic processes was investigated. For regulation of the level of consciousness models were used of hypnotic analgesia, automatization of intellectual actions and mental activity in hypnotic state. Evaluation of the mosaic of the cortical activity was made by parameters of spatial synchronization of the potentials with topographic mapping of crosscorrelation, spectral and coherent-phasic EEG characteristics. The obtained data allow to conclude about special role of the frontal areas of the left hemisphere in the process of realization of information. It has been shown that one of the main functions in neurophysiological structure of consciousness is the selection of signals according to dominating motivation. The frontal areas of the left hemisphere control the degree of inclusion of foci of increased activity, specific and non-specific for each type of activity, and possibly, regulate the way of transformation of the information.  相似文献   

14.
In children of 7-8 and 9-10 years old, the ERP components were studied by comparing two non-verbalized visuo-spatial stimuli shown in succession with 1.5-1.8 s interstimulus interval. We found the age-related differences in the specific way (and the extent to which) the cortical areas were involved into the processes of the reference stimulus (the first stimulus in the pair) encoding and into the process of comparing the memory trace against the test stimulus. In both age groups, the sensory-specific N1 ERP component in the visual cortices had larger amplitude during working memory than during free observation. Age-related differences in the processing of the sensory-specific parameters of a stimulus are most pronounced in ERP to the test stimulus: in children of 9-10, the amplitude of N1 component increased significantly in all caudal leads following the earlier increase in P1 component in the inferior temporal and occipital areas. In the children of that age, unlike children of 7-8, the early involvement of ventro-lateral prefrontal cortex becomes apparent. In that area an increase of positivity confined to 100-200 ms post-stimulus is observed. Substantial inter-group differences are observed in the late ERP components that are related to cognitive operations. In children of 7-8, presenting both reference and test stimuli causes a significant increase in the amplitude of late positive complex (LPC) in caudal leads with maximal increase being observed in parietal areas at 300-800 ms post-stimulus. In children of 9-10, one can see some adult-like features of the late ERP components during different stages of the working memory process: in fronto-central areas N400 component increases in response to the reference stimulus, whereas LPC increases in response to the test stimulus. The data reported in this work show that the almost mature functional organization of working memory is already in place at the age of 9-10. However, the extent of the prefrontal cortex (especially its dorsal areas) involvement does not yet match the level of maturity.  相似文献   

15.
Event-related potentials (ERPs) were analyzed during the operation of working memory (WM) using short-term traces of visuospatial and letter stimuli. A comparison of the two stimuli presented at an interval of about 1500 ms showed differences in the degree and mode of the involvement of the cortical areas during the formation and retention of a short-term memory trace (the first stimulus in the pair) and its comparison with the current information (the second stimulus in the pair). At the stage of trace formation, a significant increase was observed in the amplitudes of the components of the ERPs generated during the analysis and processing of sensory-specific information: visuospatial stimuli caused an increase in the N200 component in the O 1, O 2, T 5, T 6, P 3, and P 4 derivations; and letter stimuli caused an increase in the P200 component in the F 3, F 4, F 7, F 8, C 3, C 4, P 3, P 4, T 3, and T 4 derivations. The amplitude of the slow positive complex (SPC) significantly increased in the caudal cortical areas, which is not true for adults at this stage of the operation of WM. During a comparison of short-term memory traces with current information, the SPC amplitude significantly increased in the caudal cortical areas in seven- to eight-year-old children; the prefrontal cortex was not involved at this stage of the operation of WM. These findings testify to the insufficient maturity of the central executive of WM at an age of seven to eight years.  相似文献   

16.
目的:探讨心理旋转任务中的性别差异是否受工作记忆的负荷的影响。方法:采用先后呈现提示刺激和目标刺激的范式,任务分为三种:1.无效提示的数字旋转;2.有效提示的数字旋转;3.有效提示的PMA图形旋转。结果:重复测量的方差分析表明:对无效提示的数字旋转任务,男性和女性之间的反应时和正确率都无差异;对有效提示的数字旋转任务,男性和女性之间的正确率无差异,而反应时的差异边缘显著;对有效提示的PMA图形旋转任务,男性和女性之间的正确率无差异,而反应时有显著差异。结论:工作记忆的负荷可能会影响心理旋转任务中的性别差异。  相似文献   

17.
18.
Membrane topography and organization of cortical cytoskeletal elements and organelles during early embryogenesis of the mouse have been studied by transmission and scanning electron microscopy with improved cellular preservation. At the four- and early eight-cell stages, blastomeres are round, and scanning electron microscopy shows a uniform distribution of microvilli over the cell surface. At the onset of morphogenesis, a reorganization of the blastomere surface is observed in which microvilli becomes restricted to an apical region and the basal zone of intercellular contact. As the blastomeres spread on each other during compaction, many microvilli remain in the basal region of imminent cell-cell contacts, but few are present where the cells have completed spreading on each other. Microvilli on the surface of these embryos contain linear arrays of microfilaments with lateral cross bridges. Microtubules and mitochondria become localized beneath the apposed cell membranes during compaction. Arrays of cortical microtubules are aligned parallel to regions of apposed membranes. During cytokinesis, microtubules become redistributed in the region of the mitotic spindle, and fewer microvilli are present on most of the cell surface. The cell surface and cortical changes initiated during compaction are the first manifestations of cell polarity in embryogenesis. These and previous findings are interpreted as evidence that cell surface changes associated with trophoblast development appear as early as the eight-cell stage. Our observations suggest that morphogenesis involves the activation of a developmental program which coordinately controls cortical cytoplasmic and cell surface organization.  相似文献   

19.
Changes in the organization of centrosomes in mouse splenic T lymphocytes stimulated by concanavalin A (con A) were examined by electron microscopy of serial sections. In both resting and stimulated lymphocytes the single centrosome consists of a pair of centrioles, satellite bodies, and pericentriolar material. In resting cell centrosomes the satellite bodies are preferentially associated with, and appear to be attached by short stalks to, one of the centrioles. The satellite bodies are the primary sites of microtubule termination in the resting cell centrosome. During stimulation by con A there is a several-fold increase in microtubule content. This is correlated with an overall increase in centrosome size, an apparent increase in the size and in the number of satellite bodies, and a redistribution of satellite bodies to occupy a position between the two centrioles. Increased numbers of microtubules are detected terminating on the satellite bodies and in the pericentriolar material of the stimulated cell centrosome. Microtubule assembly from centrosomes in vitro was assessed by electron microscopy using detergent-permeabilized lymphocytes that had been pretreated to remove endogenous microtubules and supplied with purified bovine brain tubulin. These studies indicate that satellite bodies are major sites of microtubule assembly in both resting and stimulated cell centrosomes and show that the centrosomes of stimulated cells assemble more microtubules in vitro than resting cell centrosomes. This parallels the increase in microtubule content in intact lymphocytes stimulated by con A and suggests that the changes in centrosome organization and microtubule assembly capacity that occur during stimulation are causally related.  相似文献   

20.
Changes in the organization of centrosomes in mouse splenic T lymphocytes stimulated by concanavalin A (con A) were examined by electron microscopy of serial sections. In both resting and stimulated lymphocytes the single centrosome consists of a pair of centrioles, satellite bodies, and pericentriolar material. In resting cell centrosomes the satellite bodies are preferentially associated with, and appear to be attached by short stalks to, one of the centrioles. The satellite bodies are the primary sites of microtubule termination in the resting cell centrosome. During stimulation by con A there is a several-fold increase in microtubule content. This is correlated with an overall increase in centrosome size, an apparent increase in the size and in the number of satellite bodies, and a redistribution of satellite bodies to occupy a position between the two centrioles. Increased numbers of microtubules are detected terminating on the satellite bodies and in the pericentriolar material of the stimulated cell centrosome. Microtubule assembly from centrosomes in vitro was assessed by electron microscopy using detergent-permeabilized lymphocytes that had been pretreated to remove endogenous microtubules and supplied with purified bovine brain tubulin. These studies indicate that satellite bodies are major sites of microtubule assembly in both resting and stimulated cell centrosomes and show that the centrosomes of stimulated cells assemble more microtubules in vitro than resting cell centrosomes. This parallels the increase in microtubule content in intact lymphocytes stimulated by con A and suggests that the changes in centrosome organization and microtubule assembly capacity that occur during stimulation are causally related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号