首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Farnesoid X receptor (FXR) serves as a receptor for chenodeoxycholic acid (CDCA) and other bile acids, and it coordinates cholesterol and lipid metabolism. Because targeting the FXR-CDCA interaction might provide a way to regulate lipid homeostasis, we developed an FXR binding assay based on fluorescence polarization. Employing a fluorescently labeled CDCA (CDCA-F), we showed that CDCA-F selectively bound to the ligand binding domain of FXR (FXR-LBD) among nuclear receptors. The assay was then used for screening inhibitors against the FXR-CDCA interaction, thereby discovering four relatively potent inhibitors. The selected inhibitors were further studied for changes in intrinsic tryptophan fluorescence of FXR-LBD to gain structural insights into the interaction. Furthermore, transactivation effects of the inhibitors on the human bile salt excretory pump (BSEP) promoter were examined to reveal their cellular activities in the FXR-mediated pathway. Therefore, we demonstrated that the developed assay would offer an efficient primary screening tool for identifying FXR modulators.  相似文献   

2.
The nuclear receptor FXR is the sensor of physiological levels of enterohepatic bile acids, the end products of cholesterol catabolism. Here we report crystal structures of the FXR ligand binding domain in complex with coactivator peptide and two different bile acids. An unusual A/B ring juncture, a feature associated with bile acids and no other steroids, provides ligand discrimination and triggers a pi-cation switch that activates FXR. Helix 12, the activation function 2 of the receptor, adopts the agonist conformation and stabilizes coactivator peptide binding. FXR is able to interact simultaneously with two coactivator motifs, providing a mechanism for enhanced binding of coactivators through intermolecular contacts between their LXXLL sequences. These FXR complexes provide direct insights into the design of therapeutic bile acids for treatment of hyperlipidemia and cholestasis.  相似文献   

3.
HX531 is a retinoid X receptor (RXR) antagonist that inhibits 9-cis retinoic acid-induced neutrophilic differentiation of HL-60 cells. In order to elucidate the inhibitory mechanism of HX531, we have developed a novel ligand sensor assay for RXR in which the receptor-coactivator interaction is directly monitored using surface plasmon resonance (SPR) biosensor technology. A 20-mer peptide from steroid receptor coactivator-1 (SRC-1), containing nuclear receptor interaction motif LXXLL was immobilized on the surface of a BIAcore sensor chip. Injection of human recombinant RXR with or without 9-cis retinoic acid resulted in ligand-dependent interaction with the SRC-1 peptide. Kinetic analysis revealed dissociation constants (KD) of 9-cis RA-preincubated RXR to SRC-1 was 5.92 x 10(-8)M. Using this technique, we found that 1 microM HX531 reduced the ka value of liganded-RXR with SRC-1, suggesting that HX531 reduced the affinity of RXR to SRC-1. This SPR assay system was applied to obtain quantitative kinetic data of RXR ligand binding to the SRC-1 peptide and the alteration of these data by antagonists.  相似文献   

4.
BACKGROUND: We describe a novel microsphere-based system to identify and characterize multiplexed interactions of nuclear receptors with peptides that represent the LXXLL binding region of coactivator proteins. METHODS: In this system, individual microsphere populations with unique red and orange fluorescent profiles are coupled to specific coactivator peptides. The coactivator peptide-coupled microsphere populations are combined and incubated with a nuclear receptor that has been coupled to a green fluorochrome. Flow cytometric analysis of the microspheres simultaneously decodes each population and detects the binding of receptor to respective coactivator peptides by the acquisition of green fluorescence. RESULTS: We have used this system to determine the binding affinities of human estrogen receptor beta ligand binding domain (ERbeta LBD) and human peroxisome proliferator activated receptor gamma ligand binding domain (PPARgamma LBD) to a set of 34 coactivator peptides. Binding of ERbeta LBD to a coactivator peptide sequence containing the second LXXLL motif of steroid receptor coactivator-1 (SRC-1(2) (676-700) is shown to be specific and saturable. Analysis of receptor binding to a multiplexed set of coactivator peptides shows PPARgamma LBD binds with high affinity to cAMP response element binding protein (CBP) peptides and to the related P300 peptide while ERbeta LBD exibits little binding to these peptides. Using the microsphere-based assay we demonstrate that ERbeta LBD and PPARgamma LBD binding affinities for the coactivator peptides are increased in the presence of agonist (estradiol or GW1929, respectively) and that ERbeta LBD binding is decreased in the presence of antagonist (raloxifene or tamoxifen). CONCLUSIONS: This unique microsphere-based system is a sensitive and efficient method to simultaneously evaluate many receptor-coactivator interactions in a single assay volume. In addition, the system offers a powerful approach to study small molecule modulation of nuclear receptor binding.  相似文献   

5.
6.
The androgen receptor (AR) is required for male sex development and contributes to prostate cancer cell survival. In contrast to other nuclear receptors that bind the LXXLL motifs of coactivators, the AR ligand binding domain is preferentially engaged in an interdomain interaction with the AR FXXLF motif. Reported here are crystal structures of the ligand-activated AR ligand binding domain with and without bound FXXLF and LXXLL peptides. Key residues that establish motif binding specificity are identified through comparative structure-function and mutagenesis studies. A mechanism in prostate cancer is suggested by a functional AR mutation at a specificity-determining residue that recovers coactivator LXXLL motif binding. An activation function transition hypothesis is proposed in which an evolutionary decline in LXXLL motif binding parallels expansion and functional dominance of the NH(2)-terminal transactivation domain in the steroid receptor subfamily.  相似文献   

7.
Coactivator recruitment by activation function 2 (AF2) in the steroid receptor ligand binding domain takes place through binding of an LXXLL amphipathic alpha-helical motif at the AF2 hydrophobic surface. The androgen receptor (AR) and certain AR coregulators are distinguished by an FXXLF motif that interacts selectively with the AR AF2 site. Here we show that LXXLL and FXXLF motif interactions with steroid receptors are modulated by oppositely charged residues flanking the motifs and charge clusters bordering AF2 in the ligand binding domain. An increased number of charged residues flanking AF2 in the ligand binding domain complement the two previously characterized charge clamp residues in coactivator recruitment. The data suggest a model whereby coactivator recruitment to the receptor AF2 surface is initiated by complementary charge interactions that reflect a reversal of the acidic activation domain-coactivator interaction model.  相似文献   

8.
9.
10.
11.
The activation function 2/ligand-dependent interaction between nuclear receptors and their coregulators is mediated by a short consensus motif, the so-called nuclear receptor (NR) box. Nuclear receptors exhibit distinct preferences for such motifs depending both on the bound ligand and on the NR box sequence. To better understand the structural basis of motif recognition, we characterized the interaction between estrogen receptor alpha and the NR box regions of the p160 coactivator TIF2. We have determined the crystal structures of complexes between the ligand-binding domain of estrogen receptor alpha and 12-mer peptides from the Box B2 and Box B3 regions of TIF2. Surprisingly, the Box B3 module displays an unexpected binding mode that is distinct from the canonical LXXLL interaction observed in other ligand-binding domain/NR box crystal structures. The peptide is shifted along the coactivator binding site in such a way that the interaction motif becomes LXXYL rather than the classical LXXLL. However, analysis of the binding properties of wild type NR box peptides, as well as mutant peptides designed to probe the Box B3 orientation, suggests that the Box B3 peptide primarily adopts the "classical" LXXLL orientation in solution. These results highlight the potential difficulties in interpretation of protein-protein interactions based on co-crystal structures using short peptide motifs.  相似文献   

12.
13.
14.
15.
The activation function 2 (AF-2)-dependent recruitment of coactivator is essential for gene activation by nuclear receptors. We show that the peroxisome proliferator-activated receptor gamma (PPARgamma) (NR1C3) coactivator-1 (PGC-1) requires both the intact AF-2 domain of PPARgamma and the LXXLL domain of PGC-1 for ligand-dependent and ligand-independent interaction and coactivation. Although the AF-2 domain of PPARgamma is absolutely required for PGC-1-mediated coactivation, this coactivator displayed a unique lack of requirement for the charge clamp of the ligand-binding domain of the receptor that is thought to be essential for LXXLL motif recognition. The mutation of a single serine residue adjacent to the core LXXLL motif of PGC-1 led to restoration of the typical charge clamp requirement. Thus, the unique structural features of the PGC-1 LXXLL motif appear to mediate an atypical mode of interaction with PPARgamma. Unexpectedly, we discovered that various ligands display variability in terms of their requirement for the charge clamp of PPARgamma for coactivation by PGC-1. This ligand-selective variable requirement for the charge clamp was coactivator-specific. Thus, distinct structural determinants, which may be unique for a particular ligand, are utilized by the receptor to recognize the coactivator. Our data suggest that even subtle differences in ligand structure are perceived by the receptor and translated into a unique display of the coactivator-binding surface of the ligand-binding domain, allowing for differential recognition of coactivators that may underlie distinct pharmacological profiles observed for ligands of a particular nuclear receptor.  相似文献   

16.
17.
Farnesoid X receptor (FXR) is a bile acid sensor that regulates lipid homeostasis. New structural data suggest that, unlike other nuclear receptors, FXR contains a second coactivator binding site and binds bile acids with the steroid backbone flipped head to tail, both of which have important functional ramifications.  相似文献   

18.
The farnesoid X receptor (FXR) is a bile acid-activated nuclear receptor that plays a major role in bile acid and cholesterol metabolism. To obtain an insight into the structure-activity relationships of FXR ligands, we investigated the functional roles of structural elements in the physiological ligands chenodeoxycholic acid [CDCA; (3alpha,7alpha)], cholic acid [CA; (3alpha,7alpha,12alpha)], deoxycholic acid [DCA; (3alpha,12alpha)], and lithocholic acid (3alpha) in regard to FXR activation in a cell-based FXR response element-driven luciferase assay and an in vitro coactivator association assay. Conversion of the carboxyl group of CDCA or CA to an alcohol did not greatly diminish their ability to activate FXR. In contrast, the 7beta-epimers of the alcohols were inactive, indicating that the bile alcohols retained the ligand properties of the original bile acids and that the 7beta-hydroxyl group diminished their FXR-activating effect. Similarly, hydroxyl epimers of DCA exhibited decreased activity compared with DCA, indicating a negative effect of 3beta- or 12beta-hydroxyl groups. Introduction of an alkyl group at the 7beta- or 3beta-position of CDCA resulted in diminished FXR activation in the following order of alkyl groups: 7-ethyl=7-propyl>3-methyl>7-methyl. These results indicate that bulky substituents, whether hydroxyl groups or alkyl residues, at the beta-position of cholanoids decrease their ability to activate FXR.  相似文献   

19.
The critical steps in bile acid metabolism have remarkable differences between humans and mice. It is known that human cholesterol 7 alpha-hydroxylase, the enzyme catalyzing the rate-limiting step of bile acid synthesis, is more sensitive to bile acid suppression. In addition, hepatic bile acid export in humans is more dependent on the bile salt export pump (BSEP). To explore the molecular basis for these species differences, we analyzed the function of the ligand-binding domain (LBD) of human and murine farnesoid X receptor (FXR), a nuclear receptor for bile acids. We observed a strong interspecies difference in bile acid-mediated FXR function; in the coactivator association assay, chenodeoxycholate (CDCA) activated human FXR-LBD with 10-fold higher affinity and 3-fold higher maximum response than murine FXR-LBD. Consistently, in HepG2 cells human FXR-LBD increased reporter expression more robustly in the presence of CDCA. The basis for these differences was investigated by preparing chimeric receptors and by site-directed mutagenesis. Remarkably, the double replacements of Lys(366) and Val(384) in murine FXR (corresponding to Asn(354) and Ile(372) in human FXR) with Asn(366) and Ile(384) explained the difference in both potency and maximum activation; compared with the wild-type murine FXR-LBD, the double mutant gained 8-fold affinity and more than 250% maximum response to CDCA in vitro. This mutant also increased reporter expression to an extent comparable with that of human FXR-LBD in HepG2 cells. These results demonstrate that Asn(354) and Ile(372) are critically important for FXR function and that murine FXR can be "humanized" by substituting with the two corresponding residues of human FXR. Consistent with the difference in FXR-LBD transactivation, CDCA induced endogenous expression of human BSEP by 10-12-fold and murine BSEP by 2-3-fold in primary hepatocytes. This study not only provides the identification of critical residues for FXR function but may also explain the species difference in bile acids/cholesterol metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号